• 제목/요약/키워드: flume equation

검색결과 34건 처리시간 0.024초

원뿔형 벤츄리수로의 수리특성 (Hydraulic Characteristics in the Movable Venturi Flume with Circular Cone)

  • 김대근
    • 상하수도학회지
    • /
    • 제27권2호
    • /
    • pp.177-184
    • /
    • 2013
  • This study analyzed the hydraulic characteristics of a venturi flume with a circular cone using a 3-D numerical model which uses RANS(Reynolds-Averaged Navier-Stokes Equation) as the governing equation. The venturi flume with the circular cone efficiently measures the discharge in the low-flow to high-flow range and offers the advantage of accurate discharge measurements in the case of a low flow. With no influence of the tail-water depth, the stage-discharge relationship and the flow behaviors were analyzed to verify the numerical simulation results. Additionally, this study reviewed the effect of the tail-water depth on the flow. The stage-discharge relationship resulting from a numerical simulation in the absence of an effect by the tail-water depth showed a maximum margin of error of 4 % in comparison to the result of a hydraulic experiment. The simulation results reproduced the overall flow behaviors observed in the hydraulic experiment well. The flow starts to become influenced by the tail-water depth when the ratio of the tail-water depth to the total head exceeds approximately 0.7. As the ratio increases, the effect on the flow tends to grow dramatically. As shown in this study, a numerical simulation is effective for identifying the stage-discharge relationship of a venturi flume with various types of venturi bodies, including a venturi flume with a circular cone.

Experimenting biochemical oxygen demand decay rates of Malaysian river water in a laboratory flume

  • Nuruzzaman, Md.;Al-Mamun, Abdullah;Salleh, Md. Noor Bin
    • Environmental Engineering Research
    • /
    • 제23권1호
    • /
    • pp.99-106
    • /
    • 2018
  • Lack of information on the Biochemical Oxygen Demand (BOD) decay rates of river water under the tropical environment has triggered this study with an aim to fill the gap. Raw sewage, treated sewage, river water and tap water were mixed in different proportions to represent river water receiving varying amounts and types of wastewater and fed in a laboratory flume in batch mode. Water samples were recirculated in the flume for 30 h and BOD and Carbonaceous BOD (CBOD) concentrations were measured at least six times. Decay rates were obtained by fitting the measured data in the first order kinetic equation. After conducting 12 experiments, the range of BOD and CBOD decay rates were found to be 0.191 to 0.92 per day and 0.107 to 0.875 per day, respectively. Median decay rates were 0.344 and 0.258 per day for BOD and CBOD, respectively, which are slightly higher than the reported values in literatures. A relationship between CBOD decay rate and BOD decay rate is proposed as $k_{CBOD}=0.8642_{k_{BOD}}-0.0349$ where, $k_{CBOD}$ is CBOD decay rate and $k_{BOD}$ is BOD decay rate. The equation can be useful to extrapolate either of the decay rates when any of the rates is unknown.

유속계 검정용수로에 관한 연구 (A study on the flume for a current meter rating)

  • 정준석;박정응
    • 물과 미래
    • /
    • 제6권2호
    • /
    • pp.30-37
    • /
    • 1973
  • The coefficient of the current meter generally determined by the maker Its coefficient is subject to being changed with time. Therefore the coefficient of the current meter has to be checked up before it is ready to be used Such an inspection is termed a current meter rating The current meter equipped an electronic apparatus and all the others are to be rated in a rating flume. The price current meter which is most widely used for measuring flow velocities ranging between 0.3m/sec and 3.5m/sec has been used in this study. The length of the flume and the optimum range of the rating in the cross section are determined in the range of 20∼120cm deep, 50∼160cm wide of the flume. In this study, the 23 different kinds of the current meter rating enabled us to determine the constants a and b of the following equation. V=an+b(m/sec) where, n is number of revolution per second(n=N/T) V is velocity(v=D/T) The above constant can be determined by the least squares method and plotting, using the velocity(V=D/T) and the number of revolution per second(n=N/T) obtained from the running distance(D), time(T), the number of revolutin(N), and the running number(m). From the experiments the following conclusions are drawn: 1) The rating flume is large enough if the flume is 110∼120cm deep, and 40∼50m long. 2) The optimum depth for rating of a current meter is in the range of h=40∼50cm.

  • PDF

임의형상 파샬플륨에 대한 무차원 유량공식 산정 (Dimensionless Discharge Formula of Parshall Flumes with Arbitrary Shape)

  • 김수영;이승오
    • 대한토목학회논문집
    • /
    • 제33권5호
    • /
    • pp.1777-1783
    • /
    • 2013
  • 유량측정방법 중에서 파샬플륨을 이용하는 방법은 유속이 매우 느리거나 토사유입이 많은 지점에서 상대적으로 유리하다. 국제표준화기구(ISO : International Organization for Standardization)에 파샬플륨의 규모별 규격화된 경험식이 제시되어 있지만, 규격을 따르지 않는 파샬플륨에 대한 수리실험이나 수치모의를 통한 연구는 다소 부족한 실정이다. 따라서 본 연구에서는 ISO 규격 파샬플륨에 대하여 경험식과 수치모의를 비교하여 파샬플륨에 대한 수치모의의 적정성을 검토하였고 현장 여건 등의 이유로 ISO 규격을 따르지 않는 파샬플륨은 유량산정공식을 얻기 위해서 수리실험을 수행해야만 했다. 이러한 임의형상의 파샬플륨에 대하여 동일 조건의 수리실험 및 수치모의 결과를 비교 검토하였다. 그 결과 수치모의가 파샬플륨의 수심과 유량을 적절하게 모의하고 있음을 확인하였다. 이 결과를 이용하여 임의형상에 대한 무차원 유량산정공식을 도출하였으며, 식을 통해 산정된 값과 실험값을 비교하였다. 그 결과 오차는 최대 2.3%로 나타났다. 파샬플륨의 규모결정시 실제 지형과 유입부 형상 등을 고려한 수치모의를 수행한다면 수치모의에 기초한 유량산정공식을 쉽게 도출 할 수 있을 것이다. 또한, 복잡한 수행과정으로 인해 오차가 발생하기 쉬운 수리모형실험을 경제적으로 보완할 수 있을 것으로 판단된다.

수조 실험에 의한 삼중자망의 뜸줄 높이에 대한 수치해석 (Numerical analysis on the headline heights of a trammel net in a flume tank experiment)

  • 박해훈;원성재;양준용;배재현;윤홍근
    • 수산해양기술연구
    • /
    • 제42권3호
    • /
    • pp.127-133
    • /
    • 2006
  • An estimation of the headline height of a bottom trammel net set across under uniform current was achieved numerically from a differential equations describing the forces of the net and compared with the measured value in a flume tank experiment. The analysis on the shape of the bottom trammel net with the headline free was based on the equilibrium equation of the bottom gill net which was modified and slack of the trammel net was varied with net depth as shown in the tank experiment. The differential equations were solved by a forth-order Runge-Kutta method. The estimated headline heights with varied slack was found to be closer than that with constant slack when compared with the actual values.

수위-유속 분산 그래프를 통한 하수흐름 특성 분석 (Sanitary sewer flow characteristics through a depth-velocity scatter graph analysis)

  • 손주영;오재일
    • 상하수도학회지
    • /
    • 제28권6호
    • /
    • pp.647-655
    • /
    • 2014
  • To perform long-term sewer monitoring, It is important to understand the nature of the wastewater flow that occurs at the point on early stage of the monitor and to prevent in advance a problem which may caused. We can infer the flow properties and external factors by analyzing the scatter graph obtained from the measured data flow rate monitoring data since an field external factor affecting the sewage flow is reflected in the flow rate monitoring data. In this study, Selecting the three points having various external factors, and we Inferred the sewer flow characteristics from depth-velocity scatter graph and determined the analysis equation for the dry-weather flow rate data. At the'point 1' expected non-pressure flow, we were able to see the drawdown effect caused by the free fall in the manhole section. At the'point 2', existed weir and sediments, there was backwater effect caused by them, and each of size calculated from the scatter graph analysis were 400 mm and 130 mm. At the'Point 3', there is specific flow pattern that is coming from flood wave propagation generated by the pump station at upstream. In common, adequate equations to explain the dry weather flow data are flume equation and modified manning equation(SS method), and the equations had compatibility for explaining the data because all of $R^2$ values are over 0.95.

Predicting Scour at Bridge Piers

  • Briaud, Jean-Louis
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.3-46
    • /
    • 1999
  • A new method called SRICOS is proposed to predict the scour depth z versus time t around a cylindrical bridge pier of diameter D founded in clay. The steps involved are ; 1. taking samples at the bridge pier site, 2. testing them in an Erosion Function Apparatus called the EFA to obtain the scour rate z versus the hydraulic shear stress applied $\tau$, 3. predicting the maximum shear stress r max which will be induced around the pier by the water flowing at ν Ο before the scour hole starts to develop, 4. using the measured z versus r curve to obtain the initial scour rate zi corresponding to r max , 5. predicting the maximum depth of scour zmax for the pier, 6. using zi and zmarx to develop the hyperbolic function describing the scour depth z versus time t curve, and 7. reading the z vs. t curve at a time corresponding to the duration of the flood to find the scour depth which will develop around the pier. A new apparatus is developed to measure the z vs t curve of step 2, a series of advanced numerical simulations are performed to develop an equation for the $\tau$ max value of step 3, and a series of flume tests are performed to develop an equation for the zmax value of step 5. The method is evaluated by comparing predictions and measurements in 42 flume experiments.

  • PDF

오탁방지막이 설치된 3차원 흐름 수치모델 (Three-Dimensional Numerical Model for Flow with Silt Protector)

  • 홍남식;김가야;강윤구
    • 한국해양공학회지
    • /
    • 제22권3호
    • /
    • pp.1-7
    • /
    • 2008
  • In this study, a mathematical model for flaw with silt protector is proposed that adds a second-order energy loss term in the momentum equation. The three-dimensional numerical model was developed based on mathematical models and verified through comparison with flume test results. Loss coefficients were evaluated through the flume tests and applied to the numerical model. It was found through the investigation of various example cases that the downstream flow pattern was affected mainly by penetration of the silt curtain, not by the approach velocity, and also that the blocking effect of velocity was increased by the increase in mesh density of the silt curtain, below a certain mesh density. The blocking effect did not increase further above a certain mesh density.

방파제 주위에서의 비선형 회절 현상에 대한 고색 (On the Study of Nonlinear Wave Diffraction by the Breakwaters)

  • 조일형;김장환
    • 한국해안해양공학회지
    • /
    • 제5권4호
    • /
    • pp.350-356
    • /
    • 1993
  • 본 연구에서는 천수역 비선형 방정식인 Boussinesq 방정식을 방파제에 의한 산란문제에 적용하였다. 방파제에 의한 파랑변형을 수치계산하기 위하여 경계치문제는 유한요소법을 사용하였고 시간에 따른 진행은 Runge-Kutta 방법을 사용하였다. 수치모델로 2차원 수로에 입사파의 진행방향과 수직으로 방파제가 놓여있는 경우를 생각하였으며 방파제의 길이와 두께변화에 따른 파랑변형에 미치는 영향을 살펴보았다. 또한 후류 경계면이 막혀있는 경우와 열려있는 경우를 고려하였으며 선형결과와 비선형결과의 차이를 살펴보았다.

  • PDF

An investigation into the motion and stability behaviour of a RO-RO vessel

  • Mohan, Poonam;Shashikala, A.P.
    • Ocean Systems Engineering
    • /
    • 제9권2호
    • /
    • pp.157-177
    • /
    • 2019
  • Studies on motion response of a vessel is of great interest to researchers, since a long time. But intensive researches on stability of vessel during motion under dynamic conditions are few. A numerical model of vessel is developed and responses are analyzed in head, beam and quartering sea conditions. Variation of response amplitude operator (RAO) of vessel based on Strip Theory for different wave heights is plotted. Validation of results was done experimentally and numerical results was considered to obtain effect of damping on vessel stability. A scale model ratio of 1:125 was used which is suitable for dimensions of wave flume at National Institute of Technology Calicut. Stability chart are developed based on Mathieu's equation of stability. Ince-Strutt chart developed can help to capture variations of stability with damping.