• Title/Summary/Keyword: flume equation

Search Result 34, Processing Time 0.025 seconds

Hydraulic Characteristics in the Movable Venturi Flume with Circular Cone (원뿔형 벤츄리수로의 수리특성)

  • Kim, Dae Geun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2013
  • This study analyzed the hydraulic characteristics of a venturi flume with a circular cone using a 3-D numerical model which uses RANS(Reynolds-Averaged Navier-Stokes Equation) as the governing equation. The venturi flume with the circular cone efficiently measures the discharge in the low-flow to high-flow range and offers the advantage of accurate discharge measurements in the case of a low flow. With no influence of the tail-water depth, the stage-discharge relationship and the flow behaviors were analyzed to verify the numerical simulation results. Additionally, this study reviewed the effect of the tail-water depth on the flow. The stage-discharge relationship resulting from a numerical simulation in the absence of an effect by the tail-water depth showed a maximum margin of error of 4 % in comparison to the result of a hydraulic experiment. The simulation results reproduced the overall flow behaviors observed in the hydraulic experiment well. The flow starts to become influenced by the tail-water depth when the ratio of the tail-water depth to the total head exceeds approximately 0.7. As the ratio increases, the effect on the flow tends to grow dramatically. As shown in this study, a numerical simulation is effective for identifying the stage-discharge relationship of a venturi flume with various types of venturi bodies, including a venturi flume with a circular cone.

Experimenting biochemical oxygen demand decay rates of Malaysian river water in a laboratory flume

  • Nuruzzaman, Md.;Al-Mamun, Abdullah;Salleh, Md. Noor Bin
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.99-106
    • /
    • 2018
  • Lack of information on the Biochemical Oxygen Demand (BOD) decay rates of river water under the tropical environment has triggered this study with an aim to fill the gap. Raw sewage, treated sewage, river water and tap water were mixed in different proportions to represent river water receiving varying amounts and types of wastewater and fed in a laboratory flume in batch mode. Water samples were recirculated in the flume for 30 h and BOD and Carbonaceous BOD (CBOD) concentrations were measured at least six times. Decay rates were obtained by fitting the measured data in the first order kinetic equation. After conducting 12 experiments, the range of BOD and CBOD decay rates were found to be 0.191 to 0.92 per day and 0.107 to 0.875 per day, respectively. Median decay rates were 0.344 and 0.258 per day for BOD and CBOD, respectively, which are slightly higher than the reported values in literatures. A relationship between CBOD decay rate and BOD decay rate is proposed as $k_{CBOD}=0.8642_{k_{BOD}}-0.0349$ where, $k_{CBOD}$ is CBOD decay rate and $k_{BOD}$ is BOD decay rate. The equation can be useful to extrapolate either of the decay rates when any of the rates is unknown.

A study on the flume for a current meter rating (유속계 검정용수로에 관한 연구)

  • 정준석;박정응
    • Water for future
    • /
    • v.6 no.2
    • /
    • pp.30-37
    • /
    • 1973
  • The coefficient of the current meter generally determined by the maker Its coefficient is subject to being changed with time. Therefore the coefficient of the current meter has to be checked up before it is ready to be used Such an inspection is termed a current meter rating The current meter equipped an electronic apparatus and all the others are to be rated in a rating flume. The price current meter which is most widely used for measuring flow velocities ranging between 0.3m/sec and 3.5m/sec has been used in this study. The length of the flume and the optimum range of the rating in the cross section are determined in the range of 20∼120cm deep, 50∼160cm wide of the flume. In this study, the 23 different kinds of the current meter rating enabled us to determine the constants a and b of the following equation. V=an+b(m/sec) where, n is number of revolution per second(n=N/T) V is velocity(v=D/T) The above constant can be determined by the least squares method and plotting, using the velocity(V=D/T) and the number of revolution per second(n=N/T) obtained from the running distance(D), time(T), the number of revolutin(N), and the running number(m). From the experiments the following conclusions are drawn: 1) The rating flume is large enough if the flume is 110∼120cm deep, and 40∼50m long. 2) The optimum depth for rating of a current meter is in the range of h=40∼50cm.

  • PDF

Dimensionless Discharge Formula of Parshall Flumes with Arbitrary Shape (임의형상 파샬플륨에 대한 무차원 유량공식 산정)

  • Kim, Sooyoung;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1777-1783
    • /
    • 2013
  • Parshall flume is more practical one of hydraulic structures for measuring flowrate in open channels and also has more advantages when the magnitude of flow velocity is relatively lower or much more sediments are brought from upstream. International Organization for Standardization (ISO) has suggested the empirical formulas standardized by the sizes and dimensions of Parshall flume. However, the related studies using the numerical simulations and experiments are relatively rare. Therefore, in this study, it was examined whether the numerical simulation was adequacy for reproducing the hydraulic characteristics of Parshall flume as much as laboratory experiments by comparing the results from numerical simulations and empirical equation. And for arbitrary Parshall flume, that is unlisted in the ISO standards due to environmental conditions, constructional difficulties etc, thus, the hydraulic experiments should be conducted to obtain the empirical formulas for it, the results from numerical simulations were compared with those of laboratory experiments. Consequently, it was convinced that the numerical simulation about Parshall flume was simulated appropriately instead of experimental approach. And the dimensionless discharge equation of arbitrary ones was suggested using the results of numerical simulations, and the equation was validated by comparing with laboratory experimental results showing the maximum relative error of 2.3%. If the actual topography, the shape of inlet and submerged flow, which is excluded in this study, were carefully considered, it would be possible to supply a simple empirical discharge equation based on numerical results. Also, it can replete hard works for hydraulic experiment being error-prone with complex procedures to a minimum of economic effort.

Numerical analysis on the headline heights of a trammel net in a flume tank experiment (수조 실험에 의한 삼중자망의 뜸줄 높이에 대한 수치해석)

  • Park, Hae-Hoon;Won, Sung-Jae;Yang, Joon-Yong;Bae, Jae-Hyun;Yoon, Hong-Keun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.3
    • /
    • pp.127-133
    • /
    • 2006
  • An estimation of the headline height of a bottom trammel net set across under uniform current was achieved numerically from a differential equations describing the forces of the net and compared with the measured value in a flume tank experiment. The analysis on the shape of the bottom trammel net with the headline free was based on the equilibrium equation of the bottom gill net which was modified and slack of the trammel net was varied with net depth as shown in the tank experiment. The differential equations were solved by a forth-order Runge-Kutta method. The estimated headline heights with varied slack was found to be closer than that with constant slack when compared with the actual values.

Sanitary sewer flow characteristics through a depth-velocity scatter graph analysis (수위-유속 분산 그래프를 통한 하수흐름 특성 분석)

  • Son, Jooyoung;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.647-655
    • /
    • 2014
  • To perform long-term sewer monitoring, It is important to understand the nature of the wastewater flow that occurs at the point on early stage of the monitor and to prevent in advance a problem which may caused. We can infer the flow properties and external factors by analyzing the scatter graph obtained from the measured data flow rate monitoring data since an field external factor affecting the sewage flow is reflected in the flow rate monitoring data. In this study, Selecting the three points having various external factors, and we Inferred the sewer flow characteristics from depth-velocity scatter graph and determined the analysis equation for the dry-weather flow rate data. At the'point 1' expected non-pressure flow, we were able to see the drawdown effect caused by the free fall in the manhole section. At the'point 2', existed weir and sediments, there was backwater effect caused by them, and each of size calculated from the scatter graph analysis were 400 mm and 130 mm. At the'Point 3', there is specific flow pattern that is coming from flood wave propagation generated by the pump station at upstream. In common, adequate equations to explain the dry weather flow data are flume equation and modified manning equation(SS method), and the equations had compatibility for explaining the data because all of $R^2$ values are over 0.95.

Predicting Scour at Bridge Piers

  • Briaud, Jean-Louis
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.3-46
    • /
    • 1999
  • A new method called SRICOS is proposed to predict the scour depth z versus time t around a cylindrical bridge pier of diameter D founded in clay. The steps involved are ; 1. taking samples at the bridge pier site, 2. testing them in an Erosion Function Apparatus called the EFA to obtain the scour rate z versus the hydraulic shear stress applied $\tau$, 3. predicting the maximum shear stress r max which will be induced around the pier by the water flowing at ν Ο before the scour hole starts to develop, 4. using the measured z versus r curve to obtain the initial scour rate zi corresponding to r max , 5. predicting the maximum depth of scour zmax for the pier, 6. using zi and zmarx to develop the hyperbolic function describing the scour depth z versus time t curve, and 7. reading the z vs. t curve at a time corresponding to the duration of the flood to find the scour depth which will develop around the pier. A new apparatus is developed to measure the z vs t curve of step 2, a series of advanced numerical simulations are performed to develop an equation for the $\tau$ max value of step 3, and a series of flume tests are performed to develop an equation for the zmax value of step 5. The method is evaluated by comparing predictions and measurements in 42 flume experiments.

  • PDF

Three-Dimensional Numerical Model for Flow with Silt Protector (오탁방지막이 설치된 3차원 흐름 수치모델)

  • Hong, Nam-Seeg;Kim, Ga-Ya;Kang, Yoon-Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • In this study, a mathematical model for flaw with silt protector is proposed that adds a second-order energy loss term in the momentum equation. The three-dimensional numerical model was developed based on mathematical models and verified through comparison with flume test results. Loss coefficients were evaluated through the flume tests and applied to the numerical model. It was found through the investigation of various example cases that the downstream flow pattern was affected mainly by penetration of the silt curtain, not by the approach velocity, and also that the blocking effect of velocity was increased by the increase in mesh density of the silt curtain, below a certain mesh density. The blocking effect did not increase further above a certain mesh density.

On the Study of Nonlinear Wave Diffraction by the Breakwaters (방파제 주위에서의 비선형 회절 현상에 대한 고색)

  • 조일형;김장환
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.350-356
    • /
    • 1993
  • We carry out a numerical calculation to understand the nonlinear wave deformation around breakwaters using the Boussinesq equation, which is weakly nonlinear and weakly dispersive shallow water equation. A numerical method based on a finite element scheme and fourth order Runge-Kutta algorithm is employed to investigate the diffraction of incident waves by the breakwater. As a computational model, two-dimensional wave flume is treated. The breakwaters is perpendicular to the side wall of a channel. From the numerical results, the wave deformations according to the change of the length and the thickness of breakwaters are investigated. We also investigate the effect of the nonlinearity by comparing the results with the linear solutions.

  • PDF

An investigation into the motion and stability behaviour of a RO-RO vessel

  • Mohan, Poonam;Shashikala, A.P.
    • Ocean Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.157-177
    • /
    • 2019
  • Studies on motion response of a vessel is of great interest to researchers, since a long time. But intensive researches on stability of vessel during motion under dynamic conditions are few. A numerical model of vessel is developed and responses are analyzed in head, beam and quartering sea conditions. Variation of response amplitude operator (RAO) of vessel based on Strip Theory for different wave heights is plotted. Validation of results was done experimentally and numerical results was considered to obtain effect of damping on vessel stability. A scale model ratio of 1:125 was used which is suitable for dimensions of wave flume at National Institute of Technology Calicut. Stability chart are developed based on Mathieu's equation of stability. Ince-Strutt chart developed can help to capture variations of stability with damping.