• Title/Summary/Keyword: fluidized beds

Search Result 37, Processing Time 0.025 seconds

Effects of Biomass Gasification by Addition of Steam and Calcined Dolomite in Bubbling Fluidized Beds (기포유동층에서 수증기 및 소성된 백운석 첨가에 의한 바이오매스 가스화의 영향)

  • Jo, WooJin;Jeong, SooHwa;Park, SungJin;Choi, YoungTai;Lee, DongHyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.783-791
    • /
    • 2015
  • A fluidized-bed reactor with an inside diameter of 0.1 m and a height of 1.2 m was used to study the effect of steam and catalyst additions to air-blown biomass gasification on the production of producer gas. The equipment consisted of a fluidized bed reactor, a fuel supply system, a cyclone, a condenser, two receivers, steam generator and gas analyzer. Silica sand with a mean particle diameter of $380{\mu}m$ was used as a bed material and calcined dolomite ($356{\mu}m$), which is effective in tar reduction and producer gas purification, was used as the catalyst. Both of Korea wood pellet (KWP) and a pellet form of EFB (empty fruit bunch) which is the byproduct of Southeast Asia palm oil extraction were examined as biomass feeds. In all the experiments, the feeding rates were 50 g/min for EFB and 38 g/min for KWP, respectively at the reaction temperature of $800^{\circ}C$ and an ER (equivalence ratio) of 0.25. The mixing ratio (0~100 wt%) of catalyst was applied to the bed material. Air or an air-steam mixture was used as the injection gas. The SBR (steam to biomass ratio) was 0.3. The composition, tar content, and lower heating value of the generated producer gas were measured. The addition of calcined dolomite decreased tar content in the producer gas with maximum reduction of 67.3 wt%. The addition of calcined dolomite in the air gasification reduced lower heating value of the producer gas. However The addition of calcined dolomite in the air-steam gasification slightly increased its lower heating value.

Solid Circulation Rate in a Viscous Liquid-Solid Circulating Fluidized Bed (점성유체 액/고 순환유동층에서 입자의 순환속도)

  • Hong, Sung Kyu;Jang, Hyung Ryun;Lim, Dae Ho;Yoo, Dong Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.706-711
    • /
    • 2016
  • Characteristics of solid circulation rate in the liquid-solid circulating fluidized beds with viscous liquid medium were investigated. Effects of primary and secondary liquid velocities, particle size, liquid viscosity and height of solid particles piled up in the solid recycle device on the solid circulation rate were considered. The solid circulation rate increased with increasing primary and secondary liquid velocities, liquid viscosity and height of solid particles in the downcommer, but it decreased with increasing particle size. The particle rising velocity in the riser decreased with increasing the ratio of $U_{L1}/U_{L2}$ and particle size. The slip velocity of liquid and particle, $U_L/U_S$, decreased with increasing liquid viscosity but it increased with increasing particle size. The values of solid circulation rate were well correlated in terms of operating variables and dimensionless groups.

Characteristics of Heat Transfer in Three-Phase Swirling Fluidized Beds (삼상 Swirling 유동층에서 열전달 특성)

  • Son, Sung-Mo;Shin, Ik-Sang;Kang, Yong;Cho, Yong-Jun;Yang, Hee-Chun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.56-62
    • /
    • 2008
  • Characteristics of heat transfer were investigated in a three-phase swirling fluidized bed whose diameter was 0.102 m and 2.5 m in height. Effects of gas and liquid velocities, particle size and liquid swirling ratio ($R_S$) on the immersed heater-to-bed overall heat transfer coefficient were examined. The heat transfer characteristics between the immersed heater and the bed was well analyzed by means of phase space portraits and Kolmogorov entropy(K) of the time series of temperature difference fluctuations. The phase space portraits of temperature difference fluctuations became stable and periodic and the value of Kolmogorov entropy tended to decrease with increasing the value of liquid swirling ratio from 0.1 to 0.4. The value of Kolmogorov entropy exhibited its minimum with increasing liquid swirling ratio. The value of overall heat transfer coefficient (h) showed its maximum with the variation of liquid velocity, bed porosity or liquid swirling ratio, but it increased with increasing gas velocity and particle size. The value of K exhibited its maximum at the liquid velocity at which the h value attained its maximum. The overall heat transfer coefficient and Kolmogorov entropy were well correlated in terms of dimensionless groups and operating variables.

A New Process for Liquid Phase Sintering of W-Cu Composite; Fluidized Beds Reductio Method (W-Cu 합금의 액상소결을 위한 새로운 공정의 개발:유동층 환원법)

  • Ihn, Tae-Hyoung;Lee, Seok-Woon;Joo, Seung-Ki
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.393-400
    • /
    • 1994
  • A new process for uniform coating of copper to submicron tungsten powder has been developed. W-Cu alloy where copper can be uniformly distibuted has been made by the liquid phase sintering of thus prepared tungsten powder. It has been found that copper content can be lowered less than IOwt. % in our new process, maintaining the uniform distribution of copper in W-Cu alloy. Relative density above 96% was obtained after the liquid phase sintering when small amount of cobalt was added. It was revealed that the rapid increase of densification rate was due to the enhancement of wettability between tungsten particle and liquid copper.

  • PDF

Reclamation of Furan Sand and Its Effect on the Cast (후란 주물사의 재생 및 그의 주물에 미치는 영향)

  • 백고길;최양진;황교현
    • Resources Recycling
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 1996
  • Burmng method tn Bnidi-ied beds 101 the effectlvr reclamation of Sunn fi,uadry sand war u~ed lather tl~an rncchan1c;ll or p~~cumatiace thodq. which are co~nmonlyu scd in foundry factoricr in Kojcu In olrlcr to rcrnuvc hlc;~ns and ha~doersi ~nm foundry sand sndaces in the fluidized bcd, the lnnsl sffccuve lcmpemture mge was h00-70W. Sulbcr slab~l~liyn dca and comliresslvc streugtli oL rccla~mcd sand recyclcd by the burning luctllod wcre lalgcr dao those of rcclalmcd a n d by lllc pncumatlc mctllod. Tile energy cost IOIt he bummy mctliod was cstimalcd al SlZ0011'on oi llie iccl;~~rncds md. The coql l~ductlon in pul.chasing nzw s;od as well as the prevenllon or cnv~conmcnl.il contamlnallnn could hc hmefitcrl hy usl~lg Ihc rec1;~rnnl~oonf liisndry siod ~ecycledb y the method rleieloped in thls sludy

  • PDF

Characterization of flow properties of pharmaceutical pellets in draft tube conical spout-fluid beds

  • Foroughi-Dahr, Mohammad;Sotudeh-Gharebagh, Rahmat;Mostoufi, Navid
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.274-281
    • /
    • 2018
  • Experimental studies of the hydrodynamic performance of the draft tube conical spout-fluid bed (DCSF) were conducted using pharmaceutical pellets. The experiments were carried out in a DCSF consisted of two sections: (a) a conical section with the cross section of $120mm{\times}250mm$ and the height of 270 mm, (b) a cylindrical section with the diameter of 250 mm and the height of 600 mm. The flow characteristics of solids were investigated with a high speed camera and a pezoresistive absolute pressure transducer simultaneously. These characteristics revealed different flow regimes in the DCSF: packed bed at low gas velocities, fluidized bed in draft tube at higher gas velocities until minimum spouting, and spouted bed. The stable spouting was identified by the presence of two dominant frequencies of the power spectrum density of pressure fluctuation signature: (i) the frequency band 6-9 Hz and (ii) the frequency band 12-15 Hz. The pressure drops across the draft tube as well as the annulus measured in order to better recognize the flow structure in the DCSF. It was observed that the pressure drop across the draft tube, the pressure drop across the annulus, and the minimum spouting velocity increase with the increase in the height of draft tube and distance of the entrainment zone, but with the decrease in the distributor hole pitch. Finally, this study provided novel insight into the hydrodynamic of DCSF, particularly minimum spouting and stable spouting in the DCSF which contains valuable information for process design and scale-up of spouted bed equipment.

Characteristics of Particle Flow and Heat Transfer in Liquid-Particle Swirling Fluidized Beds (액체-입자 Swirling 유동층에서 유동입자 흐름 및 열전달 특성)

  • Son, Sung-Mo;Kang, Suk-Hwan;Kang, Yong;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.505-512
    • /
    • 2006
  • Characteristics of particle holdup and heat transfer were investigated in a liquid-particle swirling fluidized bed whose diameter was 0.102 m and 2.5 m in height. Effects of liquid velocity, particle size and swirling liquid ratio($R_s$) on the particle holdup and immersed heater-to-bed overall heat transfer coefficient were examined. The particle holdup increased with increasing particle size and swirling liquid ratio but decreased with increasing liquid velocity.The local particle holdup was relatively high in the region near the heater when the $R_s$ value was 0.1~0.3, but the radial particle holdup was almost uniform when the $R_s$ value was 0.5, whereas, when the $R_s$ value was 0.7, the local particle holdup was relatively low in the region near the heater. The heat transfer characteristics between the immersed heater and the bed was well analyzed by means of phase space portraits and Kolmogorov entropy(K) of the time series of temperature difference fluctuations. The phase space portraits of temperature difference fluctuations became stable and periodic and the value of Kolmogorov entropy tended to decrease with increasing the value of $R_s$ from 0.1 to 0.5. The Kolmogorov entropy exhibited its maximum value with increasing liquid velocity. The value of overall heat transfer coefficient(h) showed its maximum value with the variation of liquid velocity, bed porosity or swirling liquid ratio, but it increased with increasing particle size. The value of K exhibited its maximum at the liquid velocity at which the h value attained its maximum. The particle holdup and overall heat transfer coefficient were well correlated in terms of dimensionless groups of operating variables.