• 제목/요약/키워드: fluid-applied

Search Result 2,869, Processing Time 0.028 seconds

Computer Simulation Study of the Thermoelectric Cooling by Hybrid Method (하이브리드법을 이용한 열전냉각의 수치해석 연구)

  • Kim, N.J.;Lee, J.Y.;Kim, C.B.
    • Solar Energy
    • /
    • v.20 no.1
    • /
    • pp.97-108
    • /
    • 2000
  • The purpose of this study is to minimize the heat transfer surface area and cold fluid exit temperature of heat exchanger which applied to the refrigeration and air-conditioning system by utilizing the thermoelectric principle. Both uniform and non-uniform current distribution methods which applied to the analysis of the TE elements that incorporates heat exchanger were investigated. The non-uniform current distribution method had the better coefficient of performance and had the lower cold fluid exit temperature of the TE cooling system than the uniform current distribution method. It was found that if a TE cooling system incorporates a heat exchanger, a non-uniform current distribution should guarantee to the lowest cold fluid exit temperature. Also, the hybrid method (combination of the uniform and non-uniform current distribution method) is investigated to achieve the best results by combining the uniform and non-uniform current distributions. The results show that it can lower the cold fluid exit temperature and reduce the heat transfer surface area for the parallel flow arrangement if we apply the constant current in some entry region and the non-uniform increasing current in the direction of the cold fluid flow afterwards.

  • PDF

Investigation of Polishing Characteristics of Fused Silica Glass Using MR Fluid Jet Polishing (MR Fluid Jet Polishing 시스템에 의한 Fused Silica Glass 연마특성 고찰)

  • Lee, Jung-Won;Cho, Yong-Kyu;Cho, Myeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.761-766
    • /
    • 2012
  • Abrasive fluid jet polishing processes have been used for the polishing of optical surfaces with complex shapes. However, unstable and unpredictable polishing spots can be generated due to the fundamental property of an abrasive fluid jet that it begins to lose its coherence as the jet exits a nozzle. To solve such problems, MR fluid jet polishing has been suggested using a mixture of abrasives and MR fluid whose flow properties can be readily changed according to imposed magnetic field intensity. The MR fluid jet can be stabilized by imposed magnetic fields, thus it can remain collimated and coherent before it impinges upon the workpiece surface. In this study, MR fluid jet polishing characteristics of fused silica glass were investigated according to injection time and magnetic field intensity variations. Material removal rates and 3D profiles of the generated polishing spots were investigated. From the results, it can be confirmed that the developed MR fluid polishing system can be applied for stable and predictable precise polishing of optical parts.

3-D Axisymmetric Fluid-Structure-Soil Interaction Analysis Using Mixed-Fluid-Element and Infinite-Element (혼합형 유체요소와 무한요소를 이용한 3차원 축대칭 유체-구조물-지반 상호작용해석)

  • 김재민;장수혁;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.257-266
    • /
    • 1999
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure on/in horizontally layered half.space considering the effects of the interior fluid and exterior soil medium in the frequency domain. To capture the essence of fluid-structure-soil interaction effects effectively, a mixed finite element with two-field (u, p) approximation is employed to model the compressive inviscid fluid, while the structure and soil medium are presented by the 3-D axisymmetric finite elements and dynamic infinite elements. The present FE-based method can be applied to the system with complex geometry of fluid region as well as with inhomogeneous near-field soil medium, since it can directly model both the fluid and the soil. For the purpose of verification, dominant peak frequencies in transfer functions for horizontal motions of cylindrical fluid storage tanks with rigid massless foundation on a homogeneous viscoelastic half.space are compared with those by two different added mass approaches for the fluid motion. The comparison indicates that the Present FE-based methodology gives accurate solution for the fluid-structure-soil interaction problem. Finally, as a demonstration of versatility of the present study, a seismic analysis for a real-scale LNG storage tank embedded in layered half.space is carried out, and its member forces along the height of the structure are compared with those by an added mass approach developed by the present writers.

  • PDF

CONVECTION IN A HORIZONTAL POROUS LAYER UNDERLYING A FLUID LAYER IN THE PRESENCE OF NON LINEAR MAGNETIC FIELD ON BOTH LAYERS

  • Bukhari, Abdul-Fattah K.;Abdullah, Abdullah A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • A linear stability analysis applied to a system consist of a horizontal fluid layer overlying a layer of a porous medium affected by a vertical magnetic field on both layers. Flow in porous medium is assumed to be governed by Darcy's law. The Beavers-Joseph condition is applied at the interface between the two layers. Numerical solutions are obtained for stationary convection case using the method of expansion of Chebyshev polynomials. It is found that the spectral method has a strong ability to solve the multilayered problem and that the magnetic field has a strong effect in his model.

  • PDF

Verification of Computational Fluid Dynamics Model Using Observation Data in Artificial Street Canyon (인공 도로협곡 관측 자료를 활용한 전산유체역학모델 검증)

  • Kim, Do-Hyoung;Hong, Seon-Ok;Lee, Dae-Geun;Lee, Young-Gon;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.423-433
    • /
    • 2016
  • In this study, performance of a computational fluid dynamics (CFD) model is assessed from analysis on air flow pattern which is observed in the artificial street canyon. Field observations focusing on flows were conducted at an artificial street canyon in Magok region. For the observation of three-dimensional airflow structures, twelve three-dimensional wind anemometers (hereafter, CSAT3) were installed inside the street canyon. The street canyon was composed of two rectangular buildings with 35-m length, 4-m width, and 7-m height. The street width (distance between the buildings) is 7 m, making the street aspect ratio (defined by the ratio of building height to street width) of 1. For the observation of above-building wind, a CSAT3 was installed above the northwest-side building. Southwesterly, westerly and northwesterly were dominant in the street canyon during the observations. Because wind direction is parallel to the street canyon in the southwesterly case, westerly and northwesterly were selected as inflow directions in numerical simulations using a computational fluid dynamics model developed through the collaborative research project between National Institute of Meteorological Sciences and Seoul National University (CFD_NIMR_SNU). The observations showed that a well-structured vortex flow (skimming flow) and an evidence of a small eddy at the corner of the downwind building and ground appeared. The CFD_NIMR_SNU reproduced both the observed flow patterns reasonably well, although wind speeds inside the street canyon were underestimated.

Stability Analysis of Composite Material Pipes Conveying Fluid (유체유동에 의한 복합재료 파이프의 안정성 해석)

  • 최재운;송오섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.314-321
    • /
    • 2001
  • Static and oscillatory loss of stability of composite pipes conveying fluid is Investigated. The theory of than walled beams is applied and transverse shear. rotary inertia, primary and secondary warping effects are incorporated. The governing equations and the associated boundary conditions are derived through Hamilton's variational principle. The governing equations and the associated boundary conditions are transformed to an eigenvlaue problem which provides the Information about the dynamic characteristics of the system. Numerical analysis is performed by using extended Gelerkin method. Variation of critical velocity of fluid with fiber angles and mass patios of fluid to pipe Including fluid is investigated.

  • PDF

Thermohydrodynamic Lubrication Analysis of Turbocharger Journal Bearing Involving the Mixture of Water within Engine Oil (엔진오일에 물이 혼합될 때 터보챠져 저어널 베어링의 열유체윤활 해석)

  • Chun, Sang-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.131-140
    • /
    • 2012
  • In this study, using the governing equation for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water within engine oil on the performance of high speed journal bearing of a turbocharger. The governing equations are the general equations being able to be applied on the mixture of Newtonian fluid and non- Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing in a turbocharger lubricated with the mixture of two Newtonian fluid, for example, water within engine oil. The results related with the bearing performance are shown that the bearing friction is to decrease and the side leakage and bearing load increase as increasing the water content in an engine oil.

The requirements of passive levitation for nonmagnetic body in magnetic fluid (자성유체 내에서 비자성체의 수동적 부양 조건)

  • Jeon, Sang-Hyeon;Nam, Yun-Joo;Park, Myeong-Kwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.974-978
    • /
    • 2007
  • In this paper, the requirements of passive levitation for nonmagnetic body in magnetic fluid are investigated. The passive levitation system includes the electromagnetic system composed of two hollow solenoids, the magnetic fluid and the nonmagnetic body made of aluminum. The hollow solenoids generate nonuniform magnetic fields, leading to the gradient of the magnetic field in magnetic fluid. Hence, the resultant magnetic body force in magnetic fluid is used to levitate the nonmagnetic body in the opposite direction of the gravitation. The levitation conditions according to applied current and the mass of the nonmagnetic body are obtained analytically.

  • PDF

Thermohydrodynamic Lubrication Analysis of Journal Bearing on Steam Turbine Shipping Engine Involving the Mixture of Water within Turbine Oil (터빈오일과 물이 혼합될 때 증기터빈 선박엔진 저어널 베어링의 열유체윤활 해석)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.77-87
    • /
    • 2011
  • In this study, using the governing equation for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water within turbine oil on the performance of high speed journal bearing of a steam turbine shipping engine. The governing equation is the general equation being able to be applied on the mixture of Newtonian fluid and non-Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing in a steam turbine shipping engine lubricated with the mixture of two Newtonian fluid, for example, water within turbine oil. The results related with the bearing performance are showed.