• 제목/요약/키워드: fluid surface

검색결과 2,424건 처리시간 0.029초

De-icing 횟수에 따른 폴리우레탄 탑코트의 손상 조사 (Investigation of Damage to Polyurethane Topcoat Based on De-icing Cycles)

  • 이동현;박종만;임형미;권동준
    • Composites Research
    • /
    • 제37권3호
    • /
    • pp.204-208
    • /
    • 2024
  • 제/방빙액은 항공기 결빙 제거에 필수적으로 사용된다. 제/방빙액은 유기용제를 희석시켜 제조되고, 화학적으로 결빙을 제거할 때 탑코트 표면에서 손상이 발생된다. 본 연구에서는 글리콜 계열의 제/방빙액을 사용하여 결빙을 제거하였고, 결빙 제거과정에서 발생된 탑코트의 손상에 대하여 관찰하였다. USB 현미경을 이용하여 결빙의 생성 및 성장과정을 관찰하였고, 공초점 현미경으로 제/방빙액 처리에 따른 표면 형상을 관찰하였다. 또한 코팅 두께 측정과 푸리에 변환 적외선 분광분석을 통하여 표면의 물리적 및 화학적 변화를 조사하였다. 제/방빙액의 반복적인 처리는 결빙의 생성 속도 감소시키고, 결빙의 성장 속도 증가시키는 효과를 보였다. 제/방빙액 처리 과정에서 가압 공정 시 발생되는 손상과 에틸렌 글리콜에 의하여 폴리우레탄 탑코트의 표면 손상이 발견되었다. 탑코트의 손상에 대한 변화를 분석한 결과 화학적 변화는 확인되지 않았지만, 표면의 균일성은 감소하고, 표면에 균열이나 굴곡이 형성되는 물리적 손상이 관찰되었다. 제/방빙액은 결빙 제거에 효과적이나 표면 손상을 일으키는 것을 확인하였다.

대형 차량용 유압식 리타더의 유동 특성에 관한 수치해석적 연구 (Numerical Analysis Study on the Fluid Flow Characteristics of Hydraulic Retarder for Heavy Vehicles)

  • 박인성;장현;서정세
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.69-74
    • /
    • 2015
  • This study examined the fluid flow characteristics of a hydraulic retarder adapted as an auxiliary brake for heavy vehicles. The commercial computational fluid dynamics (CFD) software STAR-CCM+ was used to investigate the torque performance and flow characteristics of the hydraulic retarder. The numerical results showed that the pressure distribution was higher near the inner wall surface of the rotor and stator. The pressure of the working fluid increased in the radial direction of the rotor and stator. The variation in the fluid velocity intensity showed a similar trend to that of the fluid pressure, but the maximum velocity appeared near the outer wall surface of the rotor and stator interface. The numerical results showed that increasing the revolution speed of the retarder greatly increased the rate of torque generation.

유체부가수질량 절점분포 방법에 의한 전선진동해석 (Global Ship Vibration Analysis by Using Distributed Fluid Added Mass at Grid Points)

  • 김영복;최문길
    • 대한조선학회논문집
    • /
    • 제48권4호
    • /
    • pp.368-374
    • /
    • 2011
  • Recently, the ship vibration analysis technique has been well set up by using FEM. The methods considering the hydrodynamic added mass and damping of the fluid surrounding a floating ship have been well developed, so that they can be calculated by using the commercial package FEM programs such as MSC/NASTRAN, ADINA and ANSYS. Especially, MSC/NASTRAN has the functions to consider the fluid in tanks(MFLUID) and to solve the Fluid-Structure Interaction(FSI) problem(DMAP). In this study, the global ship vibration with considering the added mass distributed at the grid points on the wetted shell surface is introduced to. In the new method, the velocity potentials of the fluid surrounding a floating ship are calculated by solving the Lapalce equation using the Boundary Element Method(BEM), and the point mass is obtained by integrating the potentials at the points. Then, the global vibration analyses of the ship structure with distributed added mass on the wetted surface are carried out for an oil/chemical tanker. During the future sea trial, the results will be confirmed by measurement.

자성유체 밀봉시스템의 치 형상에 따른 내압 특성해석 (Characteristic Analysis of the Magnetic Fluid Seal considering the Shape of the Pole Piece)

  • 김동훈;한송엽;박관수;이기식
    • 한국자기학회지
    • /
    • 제4권1호
    • /
    • pp.56-61
    • /
    • 1994
  • 자성유체는 액체상태의 강자성체로서 가해진 자계의 세기에 따라 유체의 형상이 변하며, 이러한 유체의 형상변화는 자계의 세기를 다시 변화시키므로 자성유체를 응요한 기기를 해석하기 위해서는 유체의 형상과 자기장을 동시에 구해야 한다. 본 논문에서는 중력, 압력 자계의 세기 등에 따라 변하는 자성유체의 형상을 기존의 간략화된 가정 없이 직접 구하기 위하여 비선형 유한요소법과 유체방정식을 모두 해석할 수 있는 알고리즘을 제시하였다. 본 방법을 이용하여 각각의 외부조건에 상응하는 자성유체의 형상을 구하였고 실험을 통하여 얻은 유체 형상과 비교하였으며 이를 토대로 자성유체의 양과 치(pole piece)의 형상변화에 따른 빌봉시스템의 내압 특성을 해석하였다.

  • PDF

Experimental Investigation on Separated Flows of Axial Flow Stator and Diagonal Flow Rotor

  • Kinoue, Yoichi;Shiomi, Norimasa;Setoguchi, Toshiaki;Jin, Yingzi
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권3호
    • /
    • pp.223-231
    • /
    • 2009
  • Experimental investigations were conducted for the internal flows of the axial flow stator and diagonal flow rotor. Corner separation near the hub surface and the suction surface of stator blade are mainly focused on. For the design flow rate, the values of the axial velocity and the total pressure at stator outlet decrease between near the suction surface and near the hub surface by the influence of corner wall. For the flow rate of 80-90% of the design flow rate, the corner separation of the stator between the suction surface and the hub surface is observed, which becomes widely spread for 80% of the design flow rate. At rotor outlet for 81% of the design flow rate, the low axial velocity region grows between near the suction surface of rotor and the casing surface because of the tip leakage flow of the rotor.

Tip Clearance Effects on Inlet Hot Streaks Migration Characteristics in Low Pressure Stage of a Vaneless Counter-Rotating Turbine

  • Zhao, Qingjun;Wang, Huishe;Zhao, Xiaolu;Xu, Jianzhong
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.25-34
    • /
    • 2008
  • In this paper, three-dimensional multiblade row unsteady Navier-Stokes simulations at a hot streak temperature ratio of 2.0 have been performed to reveal the effects of rotor tip clearance on the inlet hot streak migration characteristics in low pressure stage of a Vaneless Counter-Rotating Turbine. The hot streak is circular in shape with a diameter equal to 25% of the high pressure turbine stator span. The hot streak center is located at 50% of the span and the leading edge of the high pressure turbine stator. The tip clearance size studied in this paper is 2.0mm(2.59% high pressure turbine rotor height, and 2.09% low pressure turbine rotor height). The numerical results show that the hot streak is not mixed out by the time it reaches the exit of high pressure turbine rotor. The separation of colder and hotter fluid is observed at the inlet of low pressure turbine rotor. Most of hotter fluid migrates towards the rotor pressure surface, and only little hotter fluid migrates to the rotor suction surface when it convects into the low pressure turbine rotor. And the hotter fluid migrated to the tip region of the high pressure turbine rotor impinges on the leading edge of the low pressure turbine rotor after it goes through the high pressure turbine rotor. The migration of the hotter fluid directly results in very high heat load at the leading edge of the low pressure turbine rotor. The migration characteristics of the hot streak in the low pressure turbine rotor are dominated by the combined effects of secondary flow and leakage flow at the tip clearance. The leakage flow trends to drive the hotter fluid towards the blade tip on the pressure surface and to the hub on the suction surface, even partial hotter fluid near the pressure surface is also driven to the rotor suction surface through the tip clearance. Compared with the case without rotor tip clearance, the heat load of the low pressure turbine rotor is intensified due to the effects of the leakage flow. And the numerical results also indicate that the leakage flow effect trends to increase the low pressure turbine rotor outlet temperature at the tip region.

  • PDF

자유 표면이 존재하는 유체 유동 해석을 위한 VOF 방법 기반의 새로운 수치 기법(II)-캐비터 충전 문제와 슬로싱 문제에의 응용- (A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(II)-New Free Surface Tracking Algorithm and Its Verification-)

  • 김민수;박종선;이우일
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1570-1579
    • /
    • 2000
  • Finite element analysis of fluid flow with moving free surface has been carried out in two and tree dimensions. The new VOF-based numerical algorithm that has been proposed by the present authors was applied to several 2-D and 3-D free surface flow problems. The proposed free surface tracking scheme is based on two numerical tools that have been newly introduced by the present authots; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed numerical algorithm has been applied to 2-D and 3-D cavity filling and sloshing problems, which demonstrated versatility and effectiveness of the new free surface tracking scheme as well as the overall solution procedure. The proposed numerical algorithm resolved successfully the interacting free surface with each other. The simulated results demonstrated the applicability of proposed numerical algorithm to the practical problems of large free surface motion. Also, it has been demonstrated that the proposed free surface tracking scheme can be easily implemented in any irregular non-uniform grid systems and can be extended to the 3-D free surface flow problem without additional efforts.

잉크에 부분적으로 잠겨 회전하는 롤 주위의 액막 유동 해석 (The analysis of film flow around rotating roller partially immersed in ink)

  • 유승환;강수진;이관수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2279-2284
    • /
    • 2007
  • This study is intended to analyze the effect of thin ink-film thickness around rotating printing roll on the printing quality in the gravure printing process which is used for making electronics circuit like a RFID tag with a conductive ink. The present work numerically estimates the film thickness around rotating roller partially immersed in ink, for which the volume of fluid (VOF) method was adopted to figure out the film formation process around rotating roller. Parameter studies were performed to compare the effect of ink viscosity, surface tension, roller rotating speed, immersed angle on the film thickness. The result indicates that the film thickness has a strong dependency on the fluid viscosity, while the surface tension has negligible effect.

  • PDF

접면포착법에 의한 수중익 주위의 이층류 유동계산 (Computation of Two-Fluid Flows with Submerged hydrofoil by Interface Capturing Method)

  • 곽승현
    • 한국항만학회지
    • /
    • 제13권1호
    • /
    • pp.167-174
    • /
    • 1999
  • Numerical analysis of two-fluid flows for both water and air is carried out. Free-Surface flows with an arbitrary deformation have been simulated around two dimensional submerged hydrofoil. The computation is performed using a finite volume method with unstructured meshes and an interface capturing scheme to determine the shape of the free surface. The method uses control volumes with an arbitrary number of faces and allows cell-wise local mesh refinement. the integration in space is of second order based on midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation in time through three time levels The linear equation systems are solved by conjugate gradient type solvers and the non-linearity of equations is accounted for through picard iterations. The solution method is of pressure-correction type and solves sequentially the linearized momentum equations the continuity equation the conservation equation of one species and the equations or two turbulence quantities.

  • PDF

절삭유 공급 방식의 신뢰성 평가 기술 (Reliability Evaluation Technology of Metal Working Fluids Supply Method)

  • 강재훈;송준엽;이승우;박화영;박종권
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.206-208
    • /
    • 2002
  • Metalworking fluids (MWFs) are fluids used during machining and grinding to prolong the life of the tool , carry away debris, and protect the surfaces of work pieces. These fluids reduce friction between the cutting tool and the work surface, reduce wear and galling, Protect surface characteristics, reduce surface adhesion or welding and carry away generated heat. Workers can be exposed to MWFs by inhaling aerosols (mists) and by skin contact with the fluid. Skin contact occurs by dipping the hands into the fluid, splashes, or handling workpieces coated with the fluids. The amount of mist generated (and the result ins level of exposure) depends on many factors. To reduce the potential health risks associated with occupational exposures to MWFs, it is required to establish optimum MWFs supply method and condition with minimum Quantity in all over the mechanical machining field including high speed type heavy cult ing process.

  • PDF