• 제목/요약/키워드: fluid pulsation

검색결과 93건 처리시간 0.028초

여러 개의 조화맥동을 갖는 유체를 운반하는 파이프의 진동 해석 (The Vibration Analysis of Pipes Conveying Fluid with Several Harmonic Pulsations)

  • 정석현;서영수;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.1077-1082
    • /
    • 2004
  • It is well known that the pipe will be unstable if the fluid velocity is higher than critical velocity. But even if the velocity of the fluid below the critical velocity, resonance will be caused by pulsation of the fluid. So, many people has studied about the piping system vibration due to a fluid pulsation. But almost guess that fluid has only one hamonic pulsation. Actually, like this case is rare quite. So, in this paper, we consider the vibration analysis of a pipe conveying fluid with several harmonic pulsations and compare the result which considers one hamonic pulsation with the result which considers several harmonic pulsations. And we verify the result in time domain again.

  • PDF

유체 맥동을 고려한 압축기 토출 배관의 진동 응답 해석 (Vibration Analysis of Discharge Pipe with Fluid Pulsation in a Rotary Compressor)

  • 서영수;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1049-1054
    • /
    • 2002
  • Fluid Pulsation in pipe usually cause several forces and these forces make mechanical vibration and noise. Protecting pipe from mechanical vibration is very important problem because vibration make pipe damage and break. To analyze pipe, we must formulate both the fluid pulsation force and vibration of pipe. In this paper fluid force from pulsation is modeled by Fluid Dynamics and solved by FEM(finite element method). The discharge pipe is also modeled by the FEM with use of 6 dof beam model. The acceleration of discharge pipe is estimated by the suggested method in this paper. The comparision of estimated results with experimental results show good agreement, which verified the validation of this method

  • PDF

맥동하는 유체를 포함하는 3차원 배관 계의 진동 해석 (Vibration Analysis of A 3-Dimensional Pipe Conveying Pulsating Fluid Flow)

  • 서영수;정의봉;윤상돈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.933-938
    • /
    • 2002
  • A pulsation of fluid in a pipe sometimes causes severe vibration of pipe. The inertia, damping and stiffness characteristics of pipe will be changed by the effect of fluid-structure interaction. The velocity and pressure of fluid will impose the force to a bended shape pipe. In this paper, a pipe with fluid flow is modeled by finite element method and the fluid force from pulsation is also modeled by the fluid dynamics. The vibration of pipe conveying pulsating fluid flow can be estimated by taking into consideration of fluid-structure interaction.

  • PDF

맥동하는 유체를 포함하는 3차원 배관계의 진동해석 (Vibration Analysis of A 3-Dimensional Pipe Conveying Pulsating Fluid Flow)

  • Seo, Young-Soo;Jeong, Weui-Bong;Yoon, Sang-Don
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.391.1-391
    • /
    • 2002
  • A pulsation of fluid in a pipe sometimes cause severe vibration of pipe. The inertia, damping and stiffness characteristics of pipe will be changed by the effect of fluid-structure interaction. The velocity and pressure of fluid will impose the force to a bended shape pipe. In this paper, a pipe with fluid flow is modeled by finite element method and the fluid force from pulsation is also modeled by the fluid dynamics. The vibration of pipe conveying pulsating fluid flow can be estimated by taking into considering of fluid-structure interaction.

  • PDF

PSD 성능 시험 장치의 설계 (Design of PSD Performance Test System)

  • 고광웅;정동운;이한주;이상용
    • 한국추진공학회지
    • /
    • 제7권4호
    • /
    • pp.10-18
    • /
    • 2003
  • 본 연구에서는 기존 연구에서 사용된 PSD 성능 시험 장치를 살펴보았다. 성능 시험 장치는 공급관 전체 가진 방식과 작동 유체 가진 방식으로 구분할 수 있다. 작동유체 가진 방식은 다시 피스톤 방식과 면적제한 방식으로 분류할 수 있다. 면적 제한 방식이 기초 연구에 알맞으며, 제작된 실험장치의 구성품을 제시하였다.

Flow Analysis in Positive Displacement Micro-Hydro Turbine and Development of Low Pulsation Turbine

  • Kurokawa, Junichi;Matsui, Jun;Choi, Young-Do
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.76-85
    • /
    • 2008
  • In order to extract micro hydropower in the very low specific speed range, a Positive Displacement Turbine (PDT) was proposed and steady performance was determined experimentally. However, the suppression of large pressure pulsation is inevitable for practical application of PDT. The objective of the present study is to reveal the mechanism and the characteristics of pressure pulsation in PDT by use of CFD and to suppress the pressure pulsation. Unsteady CFD analysis has revealed that large pressure pulsation is caused by large variation of rotational speed of the following rotor, while the driving rotor, which is output rotor, keeps constant speed. Here is newly proposed a 4-lobe helical type rotor which can reduce the pressure pulsation drastically and the performance prediction of new PDT is determined.

Performance of water-jet pump under acceleration

  • Wu, Xian-Fang;Li, Ming-Hui;Liu, Hou-Lin;Tan, Ming-Gao;Lu, You-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.794-803
    • /
    • 2021
  • The instantaneous acceleration affects the performance of the water-jet pump obviously. Here, based on the user-defined function, the method to simulate the inner flow in water-jet pumps under acceleration conditions was established. The effects of two different acceleration modes (linear acceleration and exponential acceleration) and three kinds of different acceleration time (0.5s, 1s and 2s) on the performance of the water-jet pump were analyzed. The results show that the thrust and the pressure pulsation under exponential acceleration are lower than that under linear acceleration at the same time; the vapor volume fraction in the impeller under linear acceleration is 27.3% higher than that under exponential acceleration. As the acceleration time increases, the thrust gradually increases and the pressure pulsation amplitude at the impeller inlet and outlet gradually decreases, while the law of pressure pulsation is the opposite at the diffuser outlet. The main frequency of pressure pulsation at the impeller outlet is different under different acceleration time. The research results can provide some reference for the optimal design of water-jet pumps.

맥동류에 의한 파이프 계의 진동응답에 관한 연구 (A Study on the Vibration Responses of Piping Systems by Pulsation Flow)

  • 이동명;최명진
    • 한국음향학회지
    • /
    • 제16권6호
    • /
    • pp.68-75
    • /
    • 1997
  • 본 연구에서는 맥동류에 의한 파이프 계의 진동응답을 고찰하기 위해 전달행렬법을 사용하였다. 유속과 압력을 시간과 위치의 함수로 다루어 유체와 파이프간의 상호작용을 파동방정식으로 정립하고, 각 파동방정식으로부터 전달행렬을 직접 유도하였다. 맥동류로부터 유발되는 파이프 계의 동적응답은 맥동으로부터 발생하는 변동유속과 압력에 의존되는 것으로 나타났으며, 공진 근처에서 맥놀이 현상이 관찰되었다. 파이프 계의 동적거동은 파이프 내부의 유동양상과 동일한 응답특성을 나타내고, 내부 유동유체에 의해 결정된다.

  • PDF

압축기 흡입배관 압력 맥동의 유체-구조 연성 해석 (Fluid-Structure Interaction Analysis of Pressure Pulsation in a Suction Pipe of Compressor)

  • 오한음;정의봉;안세진;김민성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.779-780
    • /
    • 2014
  • This paper dealt with numerical estimation of pressure pulsation of the refrigerant in a suction pipe of the compressor. To evaluate the effect of reduction of pressure pulsation, a pipe system with tube was simulated using F.S.I.(Fluid-structure interaction) analysis. A commercial program was used for calculating behavior of pressure. The numerical simulation for pressure ratio of before and after going though internal structure were carried out. As a result, it was verified that the pressure after passing structure is less than the pressure before passing internal structure depending on the longitudinal frequency of structure.

  • PDF

연료 레일에서의 맥동저감을 위한 유체-구조 상호작용 해석 (Fluid-Structure Interaction Analysis for Pulsation Damping in Fuel Rail)

  • 심정연;김동현;조윤태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.813-816
    • /
    • 2006
  • Complex pressure pulsation phenomenon in fuel rails is generated by rapid opening and closing of injectors and it commonly causes undesirable noise. In this study, fluid-structure interaction analyses based on CFD and FEM have been conducted to examine the pulsation damping characteristics for different shapes of fuel rails. It is shown from the present results that the fuel rail with a high aspect ratio rectangular cross section seems to be best in order to reduce the pressure pulsations. It also agrees well with the previous experimental test by Mizuno, K. et al.

  • PDF