• Title/Summary/Keyword: fluid flow velocity

Search Result 1,740, Processing Time 0.027 seconds

Liquidity Evaluation on the Horizontal Branch Pipe Connected to a Food Waste Disposer (디스포저에 의한 음식물류폐기물 횡지관 유동성 평가)

  • Jang, Choon-Man;Lee, Sang-Moon;Kim, Chul-Kyu;Park, Se-Joon;Yu, Jong-Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.53-58
    • /
    • 2017
  • This paper describes liquidity evaluation on the horizontal branch pipe connected to a food waste disposer and performance of five disposers marketed. Experimental apparatus for analyzing the five disposers has been introduced to measure vibration, sound level and power consumption of the disposers. Simulator for analyzing the required water velocity to avoid waste jam inside the pipe connected to a food waste disposer has been designed and constructed. The simulator can control some experimental parameters: pipe slope, disposer supply water quantity, food waste materials and operation time of a disposer. Throughout the experimental measurements of the disposers marketed, it is found that the time need to crash food waste is about 20 seconds on the average. At the same flow condition, increase rate of internal water velocity is accelerated as the pipe slope increases. The water velocity inside the pipe having 50 A and slope of 1/50 is 0.26 m/s when the water flowrate to supply the disposer is 16 l pm. Considering the specific gravity and adhesion property of food waste, water velocity of the horizontal branch pipe connected to a food waste disposer need to excess 0.26 m/s at least to avoid the waste blockage inside the pipe.

Design of local exhaust ventilation for preventive maintenance in semiconductor fabrication industry using CFD (전산유체역학을 이용한 반도체 제조공정의 PM 전용 후드 설계 연구)

  • Hong, Jwaryung;Koo, Jae-Han;Park, Chang-Sup;Choi, Kwang-Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.208-216
    • /
    • 2019
  • Objective: The aim of this study is to control residual chemicals or by-products generated in chambers during preventive maintenance (PM) in the semiconductor manufacturing industry. We designed local exhaust ventilation using computational fluid dynamics (CFD). Methods: The air flow characteristics and capture efficiency between rectangular and slot hoods were compared numerically. The software Fluent 18.1 was used to estimate uniform velocity distribution and capture efficiency for contaminants. A metal from group 15 in the periodic table was released at the bottom of the chamber to simulate emissions. Results: The slot hood had a higher capture efficiency than a rectangular hood under the same conditions because the slot hood provided uniform air flow and higher face velocity. Also, there was no rotating swirl in the plenum for slot, that is why slot had better efficiency than rectangular even though they had similar face velocity. With less than 10 slots, the capture efficiencies for contaminants were nearly 95%. The optimum conditions for a hood to achieve high efficiency was 8 to 10 slots and a face velocity over 1 m/s. Conclusions: Well-designed ventilation systems must consider both efficiency and convenience. For this study, a slot hood that had high capture efficiency and no work disturbance was designed. This will contribute to protection of the worker's health in a PM area and other areas as well. Also, this study confirms the possibility of the application CFD in the semiconductor fabrication industry.

A Study on Numerical Analysis and Wall Thinning Effect in Accordance with the Eddy Current of MFIV Lower Body (주급수격리밸브 하부몸체의 와류현상에 따른 감육영향 및 수치해석 연구)

  • Hwang Kyeong-Mo;Jin Tae-Eun;Kim Kyung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.707-714
    • /
    • 2006
  • A numerical analysis study has performed in terms of fluid dynamics to identify the wall thinning generated in the main feedwater isolation valve body of a nuclear power plant. To review the relations between flow characteristics and the wall thinning induced by flow accelerated corrosion (FAC), numerical analysis using FLUENT code and ultrasonic tests (UT) were performed. The local velocities according to the analysis results were compared with the distribution of the measured wall thickness by ultrasonic tests. The comparison results show that the local velocity in the x-direction had no correlation with the wall thinning but the local velocity in the y-direction and turbulence intensity had a great influence on that. These results provide a good match to those of the previous studies - locations colliding vertically against components undergo severe wall thinning. These results may be utilized to the design modification and the wall thinning management for main feedwater isolation valves for preventing the wall thinning degradation.

The Visualization of the Flowfield through Tube Banks with In-line and Staggered Arrangements Using the PIV (PIV를 이용한 정렬 및 엇갈림 배열을 가진 관군을 지나는 유동장의 가시화)

  • Ro, Ki-Deok;Park, Ji-Tae;Byun, Yong-Sue
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.44-51
    • /
    • 2009
  • The Characteristics of the flowfield through tube banks with in-line and staggered arrangements were investigated by PIV. Strouhal numbers, velocity vectors and velocity profiles around the cylinders with in-line and staggered arrangements were observed at the pitch ratio Pt/D=2.0 and Reynolds number of Re=$Re=4.0{\times}10^3$. As the results The flow patterns through tube banks were almost a straight line in case of the in-line arrangement while it was almost 八 type in case of the staggered arrangement in the direction of the wake. The average velocity in the rear region of the tube banks with the staggered arrangement was far smaller than that with the in-line arrangement. The Strouhal number in the last rank was far smaller than that in the front ranks in both of the in-line and staggered arrangements. The wake of each cylinder changed with time and with the position of the cylinder.

A Study on the Velocity Distributions and Pressure Distributions in Ejector (Ejector 내의 유동특성에 관한 연구)

  • Lee, Haeng-Nam;Park, Ji-Man;Lee, Duck-Gu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.254-259
    • /
    • 2003
  • The Ejector is used to get low pressure, and it has been applied to a lot of industry field like the heat engine, the fluid instrument power plant, the food industry, environment industry etc... because there are not any problem even it is mixed with a any kind of liquid, gas, and solid. The flow characteristics in ejector are investigated by PIV and CFD. The experiment using PIV measurement for mixing pipe’s flow characteristics acquired velocity distribution, .Condition : when mixing pipe’s diameter ratio is 1:1.9, and the flux is $Q_{1}=1.136\;l/s$, $Q_{2}=1.706\;l/s$, $Q_{3}=2.276\;l/s$. Based on the PIV and the CFD results, the flow characteristics in ejector are discussed, and it shows the validity of this study.

  • PDF

Axial Velocity Profiles and Secondary Flows of Developing Laminar Flows in a Straight Connected Exit Region of a 180° Square Curved Duct (180° 곡관덕트의 출구영역에 연결된 직관덕트에서 층류유동의 속도분포와 2차유동)

  • Sohn Hyun-Chull;Lee Heang-Nam;Park Gil-Moon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1092-1100
    • /
    • 2005
  • In the present study, characteristics of steady state laminar flows of a straight duct connected to a 180$^{o}$ curved duct were examined in the entrance region through experimental and numerical analyses. For the analysis, the governing equations of laminar flows in the Cartesian coordinate system were applied. Flow characteristics such as velocity profiles and secondary flows were investigated numerically and experimentally in a square cross-sectional straight duct by the PIV system and a CFD code(STAR CD). For the PIV measurement, smoke particles produced from mosquito coils. The experimental data were obtained at 9 points dividing the test sections by 400 3m. Experimental and numerical results can be summarized as follows. 1) Reynolds number, Re was increased, dimensionless velocity profiles at the outer wall were increased due to the effect of the centrifugal force and secondary flows. 2) The intensity of a secondary flow became stronger at the inner wall rather than the outer wall regardless of Reynolds number. Especially, fluid dynamic phenomenon called conner impact were observed at dimensionless axial position, x/D$_{h}$=50.

The Study of Heat Transfer on a Heated Circular Surface by an Impinging, Circular Water Jet with the Low Velocity Against the Direction of Gravity (중력방향과 대향류인 저속 원형노즐 제트충돌에 의한 원형평판에서의 열전달 현상)

  • Kim, Ki-Tae;Eom, Yong-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.983-991
    • /
    • 2009
  • The heat transfer phenomenon was investigated in this study when a circular water jet with low velocity flows to the downward facing heated circular plate and against the direction of gravity. Data are presented for jet flow rate between 0.23 and 2.3 l/min, jet fluid temperature of 24$^{\circ}C$, heat fluxes between 345 and 687 W/m$^2$, H/D=1, 2 and 3 with a single round jet diameter 2mm. The effects of heat flux, jet velocity and H/D on the local heat transfer are investigated in for the various regions of jet impingement. The local heat transfer distributions are analyzed based on the visualization of jet flow field. Data from experimental results are correlated by expressions of the form Nu=0.01$Re^{0.58}{\cdot}Pr^{0.4}$.

Flow Near a Rotating Disk with Surface Roughness (표면조도를 갖는 회전판 주위의 유동)

  • Park, Jun-Sang;Yoon, Myung-Sup;Hyun, Jae-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.634-639
    • /
    • 2003
  • It has been studied the flow near a rotating disk with surface topography. The system Ekman number is assumed very small, i.e., $E[{\equiv}\frac{\nu}{{\Omega}^{\ast}L^{\ast2}}]<<1$ in which $L^{\ast}$ denotes a disk radius, ${\nu}$ kinematic viscosity of the fluid and ${\Omega}^{\ast}$ angular velocity of the basic state. Disk surface has a sinusoidal topographic variation along radial coordinate, i.e., $z={\delta}cos(2{\pi}{\omega}r)$, where ${\delta}$ and ${\omega}$ are, respectively, nondimensional amplitude and wave number of the disk surface. Analytic solutions, being useful over the parametric ranges of ${\delta}{\sim}O$( $E^{1/2}$ ) and ${\omega}{\leq}O$ ( $E^{1/2}$ ), are secured in a series-function form of Fourier-Bessel type. An asymptotic behavior, when $E{\rightarrow}0$, is clarified as : for a disk with surface roughness, in contrast to the case of a flat disk, the azimuthal velocity increases in magnitude, together with the thickening boundary layer. The radial velocity, however, decreases in magnitude as the amplitude of surface waviness increases. Consequently, the overall Ekman pumping at the edge of the boundary layer remains unchanged, maintaining the constant value equal to that of the flat disk.

  • PDF

The Magnus Efface of a Rotating Circular Cylinder Near a Plane Wall (벽면 근처에서 회전하는 원주의 마그너스 효과)

  • Ro, Ki-Deok;Kim, Kwang-Seok;Oh, Se-Kyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.957-962
    • /
    • 2007
  • The flow around a rotating circular cylinder near a plane wall is investigated by the measurement of the lift acting on the cylinder and by the flow visualization using the hydrogen bubble technique in the circulating water tank. The experimental parameters are the rotating direction of the cylinder, the space ratios H/D($H/D=0.05{\sim}0.5$) between cylinder and plane wall and the velocity ratios ${\alpha}({\alpha}=0{\sim}{\pm}2.0)$. In the case of clockwise, the lift on the rotating circular cylinder was increased with the reduction of the space ratios and with the velocity ratios, the upper separation point was more shifted in the rotating direction with them. In the case of anticlockwise, the absolute value of the lift on the rotating circular cylinder was increased with the space ratios and with the velocity ratios, the lower separation point was more shifted in the rotating direction with them.

Steady Boundary Layer Flow under the Influence of Progressive Finite Amplitude Wave (진행성 유한진폭파로 인한 정상성 경계층류)

  • OhImSang
    • 한국해양학회지
    • /
    • v.21 no.4
    • /
    • pp.259-264
    • /
    • 1986
  • The problem of the formation of steady stream of flat bottom boundary is revisited by applying a progressive finite amplitude wave as an external flow. A solution for the boundary layer is found by expanding the boundary equation into double Fourier series. A vertical profile of the stream is obtained as a function of the ratio, h/L, where h and L are the water depth and the wave length. For the best applicable range of the external wave, it is shown that the boundary stream is independent of the fluid viscosity, but a function of the wave parameters and the water depth. The stream velocity of the steady boundary layer flow is proportional to the wave phase velocity and the square of the ratio, H/h, where His the wave height. The magnitude of the velocity is insignificant when h/L is greater than 1/5.

  • PDF