• Title/Summary/Keyword: fluid flow velocity

Search Result 1,740, Processing Time 0.022 seconds

EFFECTS OF RADIATION AND HEAT GENERATION ON MHD AND PARABOLIC MOTION ON CASSON FLUIDS FLOW THROUGH A ROTATING POROUS MEDIUM IN A VERTICAL PLATE

  • J. PRAKASH;A. SELVARAJ
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.607-623
    • /
    • 2024
  • This article studies the effects of heat generation/absorption and thermal radiation on the unsteady magnetohydrodynamic (MHD) Casson fluid flow past a vertical plate through rotating porous medium with constant temperature and mass diffusion. It is assumed that the plate temperature and concentration level are raised uniformly. For finding the exact solution, a set of non-dimensional partial differential equations is solved analytically using the Laplace transform technique. The influence of various non-dimensional parameters on the velocity are discussed, including the effects of the magnetic parameter M, heat generation/absorption Q, thermal radiation parameter R, Prandtl number Pr, Schmidt number Sc, permeability of porous medium parameter, Casson fluid parameter γ, on velocity, temperature, and concentration profiles, which are discussed through several figures. It is found that velocity, temperature, and concentration profiles in the case of heat generation parameter Q, Casson fluid parameter γ, thermal Grashof number Gr, mass Grashof number Gc, Permeability Porous medium parameter K, and time t have retarding effects. It is also seen that the magnetic field M, Thermal Radiation parameter R, Prandtl field Pr, Schmidt number Sc have reverse effects on it.

PIV Measurements of Flow and Turbulence Characteristics of Round Jet in Crossflow (횡단류 제트의 유동 및 난류특성치에 대한 PIV 측정)

  • Kim, Kyung-Chun;Kim, Sang-Ki;Yoon, Sang-Youl
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.382-389
    • /
    • 2000
  • The instantaneous and ensemble averaged flow characteristics of a round jet issuing normally into a crossflow was studied using a flow visualization technique and Particle Image Velocimetry measurements. Experiments were performed at a jet-to-crossflow velocity ratio, 3.3, and two Reynolds numbers, 1050 and 2100, based on crossflow velocity and jet diameter. Instantaneous laser tomographic images of the vertical center plane of the crossflow jet showed that there exist very different natures in the flow structures of the near field jet even though the velocity ratio is the same. It was found that the shear layer becomes much thicker when the Reynolds number is 2100 due to the strong entrainment of the inviscid fluid by turbulent interaction between the jet and crossflow. The mean and second order statistics were calculated by ensemble averaging over 1000 realizations of instantaneous velocity fields. The detail characteristics of mean flow field, stream wise and vertical r.m.s. velocity fluctuations, and Reynolds shear stress distributions were presented. The new PlV results were compared with those from previous experimental and LES studies.

A study on the development of the velocity and temperature fields in a laminar flow through an eccentric annular ducts (偏心된 二重圓管의 環狀部를 지니는 層流流動에서의 連度場 및 溫度場의 確立에 대한 硏究)

  • 이택식;이상산
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.861-869
    • /
    • 1986
  • A numerical study has been conducted on the development of the velocity and temperature fields in a laminar flow through an eccentric annular duct. A bipolar coordinates system is adopted, and a numerical program is developed to analyze 3-dimensional parabolic flow problems. In the analysis of the velocity field, the entrance length has been defined as the distance where the axial pressure gradient is greater than that of the developed velocity field by 5%. The dimensionless hydrodynamic entry length increases with increasing eccentricity. In the transverse flow fields, the reverse flow region along the wall due to the developing axial velocity near the entrance of the duct is found. In the analysis of the temperature field, the thermal entry length has been defined as the axial distance where the mean fluid temperature is 5% less than that of the developed temperature field. The dimensionless thermal entry length increases as eccentricity or Prandtl number increases. The overshoot of the mean Nusselt number over the developed value at the zero-temperature wall is encountered, and the rate of the overshoot increases with the increase of the eccentricity and Prandtl number.

Experimental and CFD Simulations of Polluted Air Behavior in Rectangular Tunnels

  • Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.608-615
    • /
    • 2011
  • The objective of this study is to investigate the flow characteristics of polluted air behavior in rectangular tunnels using a PIV system and a commercial CFD program. The PIV experiments are simulated by using the olive oil as the tracer particles in scaled rectangular tunnels. Each model has one of four different outlet vents, each dimensionless L/H ratio of which is 0, 0.375, 0.75 and 1.125, respectively as the locations of each outlet are away from the vertical centerline through the inlet. A commercial CFD program, ANSYS CFX, was used to examine the velocity fields and the pressure distributions in numerical simulations. The kinematic viscosity of the air flow of $1.51{\times}10^{-5}m^2/s$ and the flow velocity of 0.3 m/s at the inlet are given under the same conditions in order to analyze the polluted air flow characteristics experimentally and computationally. This study is considered to examine the effect of the outlet locations in the naturally ventilated tunnel models.

Measurement of Flow Field in a Domestic Hot-Water Pump by PIV (PIV에 의한 가정용 온수펌프의 유동장 계측)

  • Lee, H.;Im, Y. C.;Kim, J. H.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.264-271
    • /
    • 1999
  • The present experimental study is aimed to investigate the flow characteristics of the high-speed flow field within hot-water pump by PIV(Particle Image Velocimetry). As multi-point simultaneous velocity acquisition, 2-D PIV system based upon the two-frame gray-level cross correlation method is adopted using PC frame-grabber and simple video system. Gated image intensifier CCD Camera to cope with illumination problem is arranged for accurate PIV measurement of high-speed complex flow. The velocity vector distribution, velocity profile, and kinetic energy are represented quantitatively at the full-scale region for the deeper understanding of the unsteady flow characteristics in a pump.

  • PDF

A Micro-Flow Sensor With Multiple Temperature Sensing Elements for Wide Range Flow Velocity Measurement (다단계 온도 감지막을 가진 고영역 흐름측정용 마이크로 흐름센서)

  • Chung Wan-Young;Kim Tae-Yong;Seo Yong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2006
  • A new silicon micro flow sensor with multiple temperature sensing elements was proposed and fabricated in considering wide range flow velocity measuring device. Thermal mass flow sensor measures the asymmetry of temperature profile around the heater which is modulated by the fluid flow. A micro mass flow sensor was normally composed of a central heater and a pair of temperature sensing elements around it. A new 2-D wide range micro flow sensor structure with three pairs of temperature sensing elements and a central heater was proposed and numerically simulated by Finite Difference Formulation to confirm the feasibility of the wide flow range sensor structure. To confirm the simulation result, the new flow sensor was fabricated on silicon substrate and the basic flow sensing properties of the sensor were measured.

Analysis of Performance Characteristics by Inner Flow Path of Side Channel Type Ring Blower (사이드 채널형 링블로워의 임펠러 내부 유로에 따른 성능변화 분석)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Jeong, Kyung-Ho;Park, Woon-Jean
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.67-71
    • /
    • 2012
  • This study analyzed performance changes by an inner flow path of impeller groove for side channel type ring blower using CFD. Two models have the same side channel and clearance while one has an inner flow path and the other doesn't. To analyze the performance change of a ring blower, overall performance and local flow field were analyzed. For the overall performance, pressure increase and impeller torque were checked under the design flow condition. Under the design flow condition, pressure increase was greater for the model with the inner flow path. The model with the inner flow path showed improved efficiency because the area subject to torque decreased due to the creation of inner flow path. To analyze local flow field, a section was created from the representative location of each impeller groove toward the direction of radius. Inner channel pressure distribution depending on the rotation direction shows that the model with the inner flow path has pressure equilibrium of working fluid through the inner flow path. Velocity distribution of inside impeller groove shows that flow field was coupled and appeared to form an inner wall where the flow field was stabilized.

A Study on Velocity Profiles between Two Baffles in a Horizontal Circular Tube

  • Chang, Tae-Hyun;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.136-142
    • /
    • 2015
  • The shell and tube heat exchanger is an essential part of a power plant for recovering transfer heat between the feed water of a boiler and the wasted heat. The baffles are also an important element inside the heat exchanger. Internal materials influence the flow pattern in the bed. The influence of baffles in the velocity profiles was observed using a three-dimensional PIV (Particle Image Velocimetry) around baffles in a horizontal circular tube. The velocity of the particles was measured before the baffle and between them in the test tube. Results show that the velocity vectors near the front baffle flow along the vertical wall, and then concentrate on the upper opening of the front baffle. The velocity profiles circulate in the front and rear baffle. These profiles are related to the Reynolds number (Re) or the flow intensity. Velocity profiles at lower Re number showed complicated mixing to obtain the velocities and concentrate on the lower opening of the rear baffle as front wall. Numerical simulations were performed to investigate the effects of the baffle and obtain the velocity profiles between the two baffles. In this study, a commercial CFD package, Fluent 6.3.21 with the turbulent flow modeling, k-${\epsilon}$ are adopted. The path line and local axial velocities are calculated between two baffles using this program.

Numerical Analysis of Electro-Hydrodynamic (EHD) Flows in Electrostatic Precipitators using Open Source Computational Fluid Dynamics (CFD) Solver (오픈 소스 전산 유체 역학 해석 프로그램을 이용한 전기집진기 내부 정전 유동 해석)

  • Song, Dong Keun;Hong, Won Seok;Shin, Wanho;Kim, Han Seok
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.103-110
    • /
    • 2013
  • The electrostatic precipitator (ESP) has been used for degrading atmospheric pollutants. These devices induce the electrical forces to facilitate the removal of particulate pollutants. The ions travel from the high voltage electrode to the grounded electrode by Coulomb force induced by the electric field when a high voltage is applied between two electrodes. The ions collide with gas molecules and exchange momentum with each other thus inducing fluid motion, electrohydrodynamic (EHD) flow. In this study, for the simulation of electric field and EHD flow in ESPs, an open source EHD solver, "espFoam", has been developed using open source CFD toolbox, OpenFOAM(R) (Open Field Operation and Manipulation). The electric potential distribution and ionic space charge density distribution were obtained with the developed solver, and validated with experimental results in the literature. The comparison results showed good agreement. Turbulence model is also incorporated to simulate turbulent flow; hence the developed solver can analyze laminar and turbulent flow. In distributions of electric potential and space charge, the distributions become distorted and asymmetric as the flow velocity increases. The effect of electrical drift flow was investigated for different flow velocities and the secondary flow in a flow of low velocity is successfully predicted.

Numerical analysis of plasma effect on fluid flow in a supersonic flow (플라즈마에 의한 초음속 유동 변화 해석)

  • Park, Sul-Ki;Cho, Hyung-Hee;Song, Ji-Woon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.369-372
    • /
    • 2009
  • A numerical analysis of the effect of plasma on flow characteristics in supersonic flow is studied. It is shown that change of direction and velocity magnitude of flow is appeared different in relative direction of plasma and fluid flow. The case of that direction of electrons, which are same with flow direction, the flow is accelerated, and the case of opposition, the flow is decelerated.

  • PDF