• 제목/요약/키워드: fluid flow velocity

Search Result 1,740, Processing Time 0.029 seconds

Mathematical modeling of humidification process by means of hollow fiber membrane contactor

  • Marjani, Azam;Baghdadi, Ali;Ghadiri, Mehdi
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.297-311
    • /
    • 2016
  • Modeling and simulation of air humidification by hollow fiber membrane contactors are investigated in the current study. A computational fluid dynamic model was developed by solving the k-epsilon turbulence 2D Navier-Stokes equations as well as mass conservation equations for steady-state conditions in membrane contactors. Finite element method is used for the study of the air humidification under different operating conditions, with a focus on the humidity density, total mass transfer flux and velocity field. There has been good agreement between simulation results and experimental data obtained from literature. It is found that the enhancement of air stream decreases the outlet humidity from 0.392 to 0.340 (module 1) and from 0.467 to 0.337 (module 2). The results also indicated that there has been an increase in air velocity in the narrow space of shell side compared with air velocity wide space of shell side. Also, irregular arrangement has lower dead zones than regular arrangement which leads to higher water flux.

A Numerical Study of Smoke Movement In Atrium Space (아트리움 공간에 있어서 연기 유동에 관한 수치해석적 연구)

  • 노재성;유홍선;정연태;김충익;윤명오
    • Fire Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.3-14
    • /
    • 1997
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire model : Zone model and Field model. The zone model used is the CFAST(version 1.6) model developed at the Building and Fire Research Laboratories, NIST in the USA. The field model is a self-developed frie field model based on Computational Fluid Dynamic (CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. For solving the liked set of velocity and pressure equation, the PISO algorithm, which strengthened the velocity-pressure coupling, was used. Since PISO algorithm is a time-marching procedure, computing time si very fast. A computational procedure for predicting velocity and temperature distribution in fire-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i.e Zone model and Field model predicted similar results for clear heights and the smoke layer temperature.

  • PDF

A Study on the Helically Coiled Heat Exchanger of Small Diameter Tubes (극세관 헬리컬 코일형 열교환기에 관한 연구)

  • Kim, Ju-Won;Kim, Jeong-Hun;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1492-1499
    • /
    • 2001
  • In order to develop the compact and flexible heat exchangers, we made the helically coiled heat exchangers. They can be manufactured with small diameter copper tubes without the need for fins; inner diameter=1.0 mm, straight tube length=1.5 m. The experiments were carried out with the following conditions; evaporation pressure=0.6 MPa, air velocity=0.7 ∼ 1.7 m/s, and working fluid=R-22. Pressure drop and heat transfer coefficient of heat exchangers were experimented according to the air velocity. The results of heat transfer coefficient show a 35% beneficial increase fur these heat exchangers over the other covered fin-tube heat exchangers. A cooling capacity of about 3 kW was obtained with an air velocity of 1.5 m/s. The distribution header has also been designed fur efficient distribution of refrigerant flow.

The finite difference analysis on temperature distribution by coordinate transformation during melting process of phase-change Material (상변화 물질의 용융과정에 있어서 좌표변환을 이용한 온도분포의 해석적 연구)

  • Kim, J.K.;Yim, J.S.
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 1985
  • An analysis is performed to investigate the influence of the buoyancy force and the thickness variation of melting layer in the containment that is filled with phase-change Material surrounding a cylindrical heating tube during melting process. The phase-change material is assumed to be initially solid at its phase-change temperature and the remaining solid at any given time is still at the phase-change temperature and neglecting the effect of heat transfer occuring within the solid. At the start of melting process, the thickness of melting layer is assumed to be a stefan-problem and after the starting process, the change of temperature and velocity is calculated using a two dimensional finite difference method. The governing equations for velocity and temperature are solved by a finite difference method which used SIMPLE (Semi Implicit Method Pressure linked Equations) algorithm. Results are presented for a wide range of Granshof number and in accordance with the time increment and it is founded that two dimensional fluid flow occurred by natural convection decreases the velocity of melting process at the bottom of container. The larger the radius of heating tube, the higher heat transfer is occurred in the melting layer.

  • PDF

The Basic Study on the Technique of Fluid Flow Analysis Using the Immersed Boundary Method (가상 경계 방법을 이용한 유동 해석 기법에 관한 기초 연구)

  • Yang, Seung-Ho;Ha, Man-Yeong;Park, Il-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.619-627
    • /
    • 2004
  • In most industrial applications, the geometrical complexity is combined with the moving boundaries. These problems considerably increase the computational difficulties since they require, respectively, regeneration and deformation of the grid. As a result, engineering flow simulation is restricted. In order to solve this kind of problems the immersed boundary method was developed. In this study, the immersed boundary method is applied to the numerical simulation of stationary, rotating and oscillating cylinders in the 2-dimensional square cavity. No-slip velocity boundary conditions are given by imposing feedback forcing term to the momentum equation. Besides, this technique is used with a second-order accurate interpolation scheme in order to improve the accuracy of flow near the immersed boundaries. The governing equations for the mass and momentum using the immersed boundary method are discretized on the non-staggered grid by using the finite volume method. The results agree well with previous numerical and experimental results. This study presents the possibility of the immersed boundary method to apply to the complex flow experienced in the industrial applications. The usefulness of this method will be confirmed when we solve the complex geometries and moving bodies.

Experimental Study on the Secondary Flow Characteristics of a Supercritical Carbon Dioxide Flow in a Gas Cooling Process Within a Square Duct (정사각 덕트 초임계 상태 이산화탄소 가스 냉각과정 중 2차 유동 특성 측정 연구)

  • Han, Seong-Ho;Seo, Jung-Sik;Kim, Young-Chan;Kim, Min-Soo;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.158-165
    • /
    • 2008
  • The carbon dioxide properties change sharply near the critical or pseudo-critical point in the heat transfer processes. The reduction in turbulent, convective heat transfer parameters observed in some supercritical data and in experiments with common gases can be due to property variation, acceleration, buoyancy or combinations of these phenomena, depending on the conditions of the applications. In this study, the measurement for the secondary flow driven by buoyancy was carried out on the supercritical carbon dioxide turbulent flows in the different boundary condition with the constant mass flow rate. The available measuring techniques were used to clarify the behaviour of any supercritical fluid. Laser Doppler Velocimeter (LDV) and a special device was used to measure the secondary velocity and turbulent characteristics of the supercritical flows.

Heat Transfer and Pressure Drop Characteristics of a Horizontal Channel Filled with Porous Media (다공성매질을 삽입한 수평채널의 열전달 및 압력강하 특성)

  • Son, Young-Seok;Shin, Jee-Young;Cho, Young-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.244-251
    • /
    • 2009
  • Porous media have especially large surface area per volume, which contain complex fluid passage. If porous media can be applied to cool a CPU or an electronic device with large heat dissipation, it could result in heat transfer enhancement due to the enlargement of the heat transfer area and the flow disturbance. This study is aimed to identify the heat transfer and pressure drop characteristics of high-porosity metal foams in a horizontal channel. Experiment is performed with the various heat flux, velocity and pore density conditions. Permeabilities, which is deduced from Non-Darcy flow model, become lower with increasing pore density. Nusselt number also decreases with higher pore density. High pore density with same porosity case shows higher pressure loss due to the increase of surface area per unit volume. The fiction factor decreases rapidly with increase of Reynolds number in Darcy flow region. However, it converges to a constant value of the Ergun coefficient in Non-Darcy flow region.

An Experimental Study on the Effect of Fluid Flow and Heat Transfer Characteristics by the Longitudinal Vortices (종방향 와동이 유체유동 및 열전달 특성에 미치는 영향에 관한 실험적 연구)

  • 양장식;김은필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.843-852
    • /
    • 2000
  • The flow characteristics and the heat transfer rate on a surface by interaction of a pair of vortices were studied experimentally. The test facility consisted of a boundary-layer wind tunnel with a vortex introduced into the flow by half-delta winglet protruding from the surface. In order to control the strength of the longitudinal vortices, the angles of attack of the vortex generators were varied from $\pm20\;degree\;to\;\pm45$ degree, but spacings between the vortex generators were fixed to 4 cm. The 3-dimensional mean velocity measurements were made using a five-hole pressure probe. Heat transfer measurements were made using the thermochromatic liquid to provide the local distribution of the heat transfer coefficient. By using the method mentioned above, the following conclusions were obtained from the present experiment. The boundary layer was thinned in the regions where the secondary flow was directed toward the wall and thickened where it was directed away from the wall. The peak augmentation of the local heat transfer coefficient occurred in the downwash region near the point of minimum boundary-layer thickness.

  • PDF

NUMERICAL STUDY ON THE CHARACTERISTICS OF NON-NEWTONIAN FLUID FLOW OVER OBSTACLE (장애물 주위의 비뉴턴 유체의 유동특성에 관한 수치적 연구)

  • Kim, Hyung Min
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.61-67
    • /
    • 2014
  • Since the most of the existing non-Newtonian models are not adequate to apply to the lattmce Boltzmann method, it is a challenging task from both the theoretical and the numerical points of view. In this research the hydro-kinetic model was modified and applied to the 3-D moving sphere in the circular channel flow and the characteristics of the shear thinning effect by the HK-model was evaluated and the condition of ${\Gamma}$ in the model was suggested for the stable simulation to generate non-trivial prediction in three dimension strong shear flows. On the wall boundaries of circular channel the curved wall surface treatment with constant velocity condition was applied and the bounceback condition was applied on the sphere wall to simulate the relative motion of the sphere. The condition is adequate at the less blockage than 0.7 but It may need to apply a multi-scale concept of grid refinement at the narrow flow region. to obtain the stable numerical results.

The Study on Performance of an Axial Fan with Centrifugal type Blades in Duct flow (덕트 내 원심식 축류팬의 성능변화에 관한 연구)

  • Han, Jae-Oh;Lee, Soo-Young;Yu, Seung-Hun;Lee, Jai-Kwon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.213-216
    • /
    • 2006
  • This paper was a study about noise reduction through flow stabilization in duct using experimental method and numerical analysis at the same time. To determine the fan's type three kinds of fans(axial fan, centrifugal fan, and axial fan with centrifugal type blades) was examined to investigate the suitability for in-line duct. As a result, under the equal number of rotation 2000 RPM, performance of an axial fan with centrifugal type blades was the most superior by 55dBA at 4.3CMM among other fans. After this, analyzed the results of the numerical analysis to find out the optimum design of pitch angle such as $0^{\circ}$, $10^{\circ}$, $15^{\circ}$ and $20^{\circ}$. The intensity of turbulence was low when pitch angle was $15^{\circ}$ and air volume became peak by 5.08 CMM. It was observed that axis component of velocity increased gradually when pitch angle increased from $0^{\circ}$ to $20^{\circ}$, and embodied noise reduction and improvement of air flow rate through flow stabilization.

  • PDF