• Title/Summary/Keyword: fluid flow velocity

Search Result 1,740, Processing Time 0.034 seconds

Measurements of Five-Hole Pressure Probe on Swirling Flow Fields of Gun-Type Gas Burner for Furnace (온풍난방기용 Gun식 가스버너의 스월유동장에 대한 5공압력프로브의 측정)

  • Kim, Jang Kweon;Oh, Seok Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.991-997
    • /
    • 2014
  • This study investigated the swirling flow fields of a gun-type gas burner (GTGB) without a combustion chamber under cold flow conditions. Three velocity components and the static pressure were measured with a straight-type five-hole pressure probe (GHPP) using a non-nulling calibration method and compared with the results of an X-type hot-wire probe (X-probe) and computational fluid dynamics (CFD). The GHPP measured the velocity and static pressure for the swirling flow of the central region of the GTGB better than the X-probe but produced slightly worse results than the CFD.

Numerical Investigation of Flows around Space Launch Vehicles at Mid-High Altitudes (중/고고도 영역에서의 우주발사체 주위 유동에 대한 수치적 연구)

  • Choi, Young Jae;Choi, Jae Hoon;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • In the present study, to investigate flows around space launch vehicles at mid-high altitudes efficiently, a three-dimensional unstructured mesh Navier-Stokes solver employing a Maxwell slip boundary condition was developed. Validation of the present flow solver was made for a blunted cone-tip configuration by comparing the results with those of the DSMC simulation and experiment. It was found that the present flow solver works well by capturing the velocity slip and the temperature jump on the solid surface more efficiently than the DSMC simulation. Flow simulations of space launch vehicles were conducted by using the flow solver. Mach number of 6 at the mid-high altitude around 86km was considered, and the flow phenomena at the mid-high altitude was discussed.

Parametric study of the wave dispersion in the hydro-elastic system consisting of an inhomogeneously prestressed hollow cylinder containing compressible inviscid fluid

  • Surkay D. Akbarov;Gurbaneli J. Veliyev
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.41-68
    • /
    • 2023
  • The present work is concerned with the study of the influence of inhomogeneous initial stresses in a hollow cylinder containing a compressible inviscid fluid on the propagation of axisymmetric longitudinal waves propagating in this cylinder. The study is carried out using the so-called three-dimensional linearized theory of elastic waves in bodies with initial stresses to describe the motion of the cylinder and using the linearized Euler equations to describe the flow of the compressible inviscid fluid. It is assumed that the inhomogeneous initial stresses in the cylinder are caused by the internal pressure of the fluid. To solve the corresponding eigenvalue problem, the discrete-analytic solution method is applied and the corresponding dispersion equation is obtained, which is solved numerically, after which the corresponding dispersion curves are constructed and analyzed. To obtain these dispersion curves, parameters characterizing the magnitude of the internal pressure, the ratio of the sound velocities in the cylinder material and in the fluid, and the ratio of the material densities of the fluid and the cylinder are introduced. Based on these parameters, the influence of the inhomogeneous initial stresses in the cylinder on the dispersion of the above-mentioned waves in the considered hydro-elastic system is investigated. Moreover, based on these results, appropriate conclusions about this influence are drawn. In particular, it is found that the character of the influence depends on the wavelength. Accordingly, the inhomogeneous initial stresses before (after) a certain value of the wavelength lead to a decrease (increase) of the wave propagation velocity in the zeroth and first modes.

Morphological characteristics of the upper airway and pressure drop analysis using 3D CFD in OSA patients (폐쇄성 수면무호흡 환자의 상기도 형태의 특징과 압력강하에 관한 3차원 전산유체역학해석)

  • Mo, Sung-Seo;Ahn, Hyung-Taek;Lee, Jeong-Seon;Chung, Yoo-Sam;Moon, Yoon-Shik;Pae, Eung-Kwon;Sung, Sang-Jin
    • The korean journal of orthodontics
    • /
    • v.40 no.2
    • /
    • pp.66-76
    • /
    • 2010
  • Objective: Obstructive sleep apnea (OSA) is a common disorder which is characterized by a recurrence of entire or partial collapse of the pharyngeal airway during sleep. A given tidal volume must traverse the soft tissue tube structure of the upper airway, so the tendency for airway obstruction is influenced by the geometries of the duct and characteristics of the airflow in respect to fluid dynamics. Methods: Individualized 3D FEA models were reconstructed from pretreatment computerized tomogram images of three patients with obstructive sleep apnea. 3D computational fluid dynamics analysis was used to observe the effect of airway geometry on the flow velocity, negative pressure and pressure drop in the upper airway at an inspiration flow rate of 170, 200, and 230 ml/s per nostril. Results: In all 3 models, large airflow velocity and negative pressure were observed around the section of minimum area (SMA), the region which narrows around the velopharynx and oropharynx. The bigger the Out-A (outlet area)/ SMA-A (SMA area) ratio, the greater was the change in airflow velocity and negative pressure. Conclusions: Pressure drop meaning the difference between highest pressure at nostril and lowest pressure at SMA, is a good indicator for upper airway resistance which increased more as the airflow volume was increased.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.

A New Approach to the Parameter Calibration of Two-Fluid Model (Two-Fluid 모형 파라미터 정산의 새로운 접근방안)

  • Kwon, Yeong-Beom;Lee, Jaehyeon;Kim, Sunho;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.63-71
    • /
    • 2019
  • The two-fluid model proposed by Herman and Prigogine is useful for analyzing macroscopic traffic flow in a network. The two-fluid model is used for analyzing a network through the relationship between the ratio of stopped vehicles and the average moving speed of the network, and the two-fluid model has also been applied in the urban transportation network where many signalized or unsignalized intersections existed. In general, the average travel speed and moving speed of a network decrease, and the ratio of stopped vehicles and low speed vehicles in network increase as the traffic demand increases. This study proposed the two-fluid model considering congested and uncongested traffic situations. The critical velocity and the weight factor for congested situation are calibrated by minimizing the root mean square error (RMSE). The critical speed of the Seoul network was about 34 kph, and the weight factor of the congestion on the network was about 0.61. In the proposed model, $R^2$ increased from 0.78 to 0.99 when compared to the existing model, suggesting that the proposed model can be applied in evaluating network performances or traffic signal operations.

A Study on the pressure loss of sloid-liquid 2 phase flow in an annulus (환형관내 고-액 2상 유동의 압력손실 변화특성에 대한 연구)

  • Woo, Nam-Sub;Han, Sang-Mok;Hwang, Young-Kyu;Yoon, Chi-Ho;Kim, Young-Ju
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2720-2724
    • /
    • 2007
  • Field measurements have revealed that the pressure drop over a borehole during drilling of a slim oil well or a well with a long reach can depend significantly on the rotation speed of the drill pipe. An accurate prediction of the annular frictional pressure drop is therefore important for conditions where the annular clearance is small. An experimental study was carried out to study solid-liquid two phase flow in a slim hole annulus. Annular velocities of carrier fluids varied from 0.2 m/s to 1.5 m/s. The carrier fluids which were utilized included tap water and CMC water solutions. Pressure drops and average flow rates were measured for the parameters such as inner-pipe rotary speed, carrier fluid velocity, hole inclination and particle injection rate. For both water and CMC solutions, the higher the concentration of the solid particles is, the larger the pressure gradients become.

  • PDF

MODELING ON FLOW CHARACTERISTICS OF INERTANCE PULSE TUBE CRYOCOOLER (관성관 맥동관 극저온 냉동기의 유동 특성 모델링)

  • Han, S.H.;Lee, K.H.;Choi, J.W.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.14-19
    • /
    • 2014
  • The flow characteristics of inertance pulse tube cryocooler(IPTC) was investigated with a computational thermal fluid dynamics for the reciprocating flow in IPTC including the piston movement of linear compressor. Two dimensional axisymmetric modeling was applied for the flow in an IPTC with a clearance between the piston and cylinder wall of linear compressor. The pressure, velocity, and temperature distribution were examined for the steady state. These were compared with previous results to confirm the validity in the modeling and computational results. The leakage between piston and cylinder wall affect the cooling capacity seriously. The dependence on mesh numbers were also examined to obtain a proper mesh numbers to improve the accuracy of calculation, which showed significant effect on the results. The user-defined function was used for the process of compression and expansion of piston.

A STUDY ON INTERNAL FLOW CHARACTERISTICS OF PCV VALVE ACCORDING TO SPOOL DYNAMIC BEHAVIOR (PCV 밸브의 스풀 동적거동에 따른 내부유동 특성에 관한 연구)

  • Lee J.H.;Lee Y.W.;Kim J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.223-227
    • /
    • 2005
  • A PCV valve is a part to control the flow rate of Blowby gas in a PCV system. A PCV system re-burns Blowby gas with fuel in a combustion chamber. Some gas enters to a crankcase room through the gap between piston ring and engine cylinder wall. This gas si called 'Blowby gas'. This gas causes many problems. In environmental view, Blowby gas includes about $25\~35\%$ hydrocarbon{HC) of total generated HC in an automobile. Hydrocarbon is a very harmful pollutant element in our life. In mechanical view, Blowby gas has some reaction with lubricant oil of crankcase room. Then, this causes lubricant oil contamination, crankcase corrosion and a decrease fo engine efficiency. Consequently, Blowby gas must be eliminated from a crankcase room. In this study, we simulated internal flow characteristics in a PCV valve according to spool dynamic behavior using local remeshing method And, we programmed our sub routine to simulate a spool dynamic motion. As results, spool dynamic behavior is periodically oscillated by the relationship between fluid force and elastic force of spring. And its magnitude is linearly increased by the differential pressure between inlet and outlet. Also, as spool is largely moved, flow area is suddenly decreased at orifice. For this reason, flow velocity is rapidly decreased by viscous effect.

  • PDF

A study on the flow characteristics in a plug valve with various port shapes (플러그 밸브의 포트형상 변화에 따른 유동특성 연구)

  • Choi, G.-W.;Park, G.-J.;Kim, Youn J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.259-264
    • /
    • 2000
  • The functions of the plug valve are the control of flow rate as well closing and opening pipe lines. Analyses on the flow characteristics in plug valve port are required to improve the performance and safety at severe operating conditions such as high-pressure and high-temperature. In this study, numerical analyses are carried out with varying the opening rate (fraction of the full open to close) of the valve and the shapes of valve Uk: straight, convex, concave and mixed shapes. The parameters influencing the flow characteristics in the valve are the discharge coefficient( $C_v$) and the resistance coefficient( K). Therefore, the distributions of static pressure, velocity vector and stream lines are investigated, and $C_v$ and K are calculated in each opening rate and shape. In case of full open, the static pressure passed through the valve port has almost been recovered. However, in case of other opening rates, the pressure does not permanently regained due to pressure drop leading to loss. This phenomenon in each shape of the valve shows the different behaviors. Calculation results show that the mixed shape has the best flow attribute.

  • PDF