• Title/Summary/Keyword: fluid flow velocity

Search Result 1,740, Processing Time 0.031 seconds

NUMERICAL METHOD IN WAVE-BODY INTERACTIONS

  • MOUSAVIZADEGAN S. H.;RAHMAN M.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.73-91
    • /
    • 2005
  • The application of Green's function in calculation of flow characteristics around submerged and floating bodies due to a regular wave is presented. It is assumed that the fluid is homogeneous, inviscid and incompressible, the flow is irrotational and all body motions are small. Two methods based on the boundary integral equation method (BIEM) are applied to solve associated problems. The first is a low order panel method with triangular flat patches and uniform distribution of velocity potential on each panel. The second method is a high order panel method in which the kernels of the integral equations are modified to make it nonsingular and amenable to solution by the Gaussian quadrature formula. The calculations are performed on a submerged sphere and some floating spheroids of different aspect ratios. The excellent level of agreement with the analytical solutions shows that the second method is more accurate and reliable.

Numerical Analysis on the Flow and Heat Transfer Characteristic of Wood-flour-filled Polypropylene Melt in an Extrusion Die (목분 충진 고분자 용융체의 압출다이 내 유동 및 열전달에 관한 수치해석)

  • Ko, Seung-Hwan;Park, Hyung-Gyu;Song, Myung-Ho;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.311-318
    • /
    • 2001
  • A three-dimensional numerical analysis of the flow and heat transfer characteristic of wood-flour-filled polypropylene melt in an extrusion die was carried out Used for this analysis were Finite Concept Method based on FVM, unstructured grid and non-Newtonian fluid viscosity model. Temperature and flow fields are closely coupled through temperature dependent viscosity and viscous dissipation. With large Peclet, Nahme, Brinkman numbers, viscous heating caused high temperature belt near die housing, Changing taper plate thickness and examining some predefined parameters at die exit investigated the effect of taper plate on velocity and temperature uniformities. In the presence of taper plate, uniformity at die exit could be improved and there existed an optimum thickness to maximize it.

  • PDF

A new correlation of the enthalpy of vaporization for pure refrigerants (순수물질 냉매에 대한 증발엔탈피의 새로운 상관식)

  • 박경근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.449-455
    • /
    • 1998
  • A header' is the device that makes uniform flow distribution in all branches from header of heat exchangers, pipe burner or chemical equipments. In this study, experimental tests have been performed in order to investigate the flow distribution characteristics in a straight header and tapered header which have 6 and 11 glass pipe branches. The experimental equipment consists of a water circulation system where the fluid velocity in each glass pipe is measured by Ar-ion LDV system. From the experiments and the theoretical equation, it could be recommended that tapered header should be determined so that its internal velocities inside the header become uniform according to taper of the header and number of attached branches for uniform flow distribution in energy systems.

  • PDF

Computational Flow Analysis on Improvement Effect of Wind Shear by a Structure Installed Upstream of a Wind Turbine (풍력발전기 풍상부 지면설치 구조물에 의한 풍속전단 개선효과의 전산유동해석)

  • Kim, Hyun-Goo;Woo, Sang-Woo;Jang, Moon-Seok;Shin, Hyuong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.278-281
    • /
    • 2008
  • This study demonstrates the advantages of a shear-free structure designed to modify vertical profiles of wind speed in the atmospheric surface layer. Computational fluid dynamics(CFD) software, FLUENT is used to interpret the velocity field modification around the structure and wind turbine. The shapes of shear-free structure, installed at upstream toward prevailing wind direction, would be fences, buildings and trees, etc. According to the simulation results, it is obvious that wind shear between heights of wind turbine's blades is decreased together with a speed-up advantage. This would lead decrease of periodic wind loading caused by wind shear and power-out increase by flow uniformity and wind speed-up.

  • PDF

Aerodynamic Design of the Axial Fan (축류 송퐁기의 공력학적 설계)

  • Sohn, Sang-Bum;Joo, Won-Gu;Cho, Kang-Rae;Nam, Hyung-Baik;Yoon, In-Kyu;Nam, Leem-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.64-69
    • /
    • 1998
  • In this study, a preliminary design method of the axial fan was systematically established based on the two-dimensional cascade theory. Flow deviation, lift coefficient, distribution of velocity and pressure coefficient on blade surfaces were predicted by an inviscid theory of Martensen method, which was also applied to select an airfoil of required performance in the present design process. The aerodynamic performance of designed blades can be predicted quickly and reasonably by using the through-flow calculation method in the preliminary design process. It would be recommendable to adopt three-dimensional viscous flow calculation at the final design refinement stage.

  • PDF

TWO DIMENSIONAL SIMULATION OF UNSTEADY CAVITATING FLOW IN A CASCADE

  • Kajishima T.;Ohta T.;Shin B. R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.179-182
    • /
    • 2005
  • We have developed a numerical scheme to reproduce the unsteady flows with cavitation by the finite-difference method. The evolution of cavitation is represented by the source/sink of vapor phase in the incompressible liquid flow. The pressure-velocity coupling is based on the fractional-step method for incompressible fluid flows, in which the compressibility is taken into account through the low Mach number assumption. We applied our method for the cavitating flows in a two-dimensional cascade, which approximates the portion near the tip of inducer in liquid-fuel engine. Particular attention was focused on the influence of turbulence model in this report. Using an eddy viscosity model, although it was not an optimized one for our purpose, the agreement with the experimental observation was improved.

  • PDF

Process Analysis for Rheo-Forming of Aluminum Materials (알루미늄재료의 Rheo-forming을 위한 성형공정해석)

  • Seo P. K.;Jung K. Y.;Jung Y. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.124-128
    • /
    • 2001
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum ahoy has been studied Two-phase fluid flow model to investigate the velocity field and temperature distribution is proposed. The unposed mathematical model is applied to the die shape of the two type. To calculate the velocities and temperature fields during rheology forming process, the each governing equation correspondent to the liquid and solid region are adapted. Theoretical model on the basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on the liquid and solid viscosity.

  • PDF

Study on Multi-Dimensional Simulation of the Flow and Filtration Characteristics in Diesel Particulate Filters (DPF의 배기가스 유동 및 포집에 관한 다차원 모델링 연구)

  • Kim, Dong-Kyun;Yoon, Cheon-Seog
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.60-68
    • /
    • 2010
  • In order to understand the flow and filtration characteristics in a wall-flow type DPF(Diesel Particulate Filter), 0-D, 1-D, and 3-D simulations are preformed. In this paper, three model are explained and validated with each other. Based on the comparisons with 1-D and 3-D results for the steady state solution, 3-D CFD analysis is preferable to 1-D for the prediction of wall velocity at the inlet and exit plane. Because PM loading process is transient state phenomena, the combination of full 3-D and time dependent simulation is crucial for the configuration of wall channels. New coupling technique, which is the connection between calculated permeability from 0-D lumped parameter model and UDF(User Defined Functions) of main solver, is proposed for the realisti

Numerical Simulation of Plate Finned-Tubes Condenser (평판휜-관 응축기의 수치 시뮬레이션)

  • Min, M.S.;Choi, S.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.193-205
    • /
    • 1994
  • A simulation program of the plate finned-tubes condenser widely used in the air conditioning system was developed. The program took into account the variations of the flow properties and fluid friction factor of refrigerant, and the heat transfer coefficients of refrigerant and air sides. The program was applied to a copper tube condenser which has outside diameter of 10.05mm, inside diameter of 9.35mm, length of 5.20m and three rows arraied staggered. Simulation results were such that refrigerant was super-heated state from the entrance to the 0.14m point, two-phase flow from the 0.14m point to the 4.10m point, sub-cooled state from the 4.10m point to the outlet. The degree of sub-cooled was $6.1^{\circ}C$. The variations of refrigerant quality, temperature, pressure, velocity, specific enthalpy, specific volume and air temperature, tube temperature were showed.

  • PDF

Effect of variable viscosity on combined forced and free convection boundary-layer flow over a horizontal plate with blowing or suction

  • Mahmoud, Mostafa A.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2007
  • The effects of variable viscosity, blowing or suction on mixed convection flow of a viscous incompressible fluid past a semi-infinite horizontal flat plate aligned parallel to a uniform free stream in the presence of the wall temperature distribution inversely proportional to the square root of the distance from the leading edge have been investigated. The equations governing the flow are transformed into a system of coupled non-linear ordinary differential equations by using similarity variables. The similarity equations have been solved numerically. The effect of the viscosity temperature parameter, the buoyancy parameter and the blowing or suction parameter on the velocity and temperature profiles as well as on the skin-friction coefficient and the Nusselt number are discussed.

  • PDF