• Title/Summary/Keyword: fluid balance

Search Result 278, Processing Time 0.029 seconds

The Study on the improvement of vehicle fuel economy test method according to the characteristics of test fuel (시험용 연료 특성에 따른 자동차 연비측정 방법 개선에 관한 연구)

  • Lee, Minho;Kim, Jeonghwan
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.9-18
    • /
    • 2014
  • These test methods, the current domestic vehicles fuel economy calculation method is tested on a dynamometer for vehicles after you have installed the vehicle, given the test mode(FTP-75 & HWFET mode, etc.) are measured by vehicle emissions and fuel economy by seeking to have the results approach, the carbon balance method. At this point, using the carbon balance method is a test method was developed seeking fuel for a standard fuel properties, where the value of the constant and saved test was measured in THC, CO, $CO_2$ has a value calculation. Therefore, use fuel which is changed every time you test the fuel properties characteristics are not considered exactly. In this study, using the carbon balance method and fluid flow rate of the fuel used in the actual test is measured by comparing the results with the flow measurement methods, properties of the fuel used for the test attribute to study ways that can be considered, taking into account the physical attributes of a more diverse fuel line and fuel economy improved measurement methods that can be reviewed.

Literatual Study on the effect of Dam-eum on Spirit (담음이 신지에 미치는 영향에 대한 문헌적 고찰)

  • Jung Jung Su;Kim Young Kyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2003
  • Dam-eum(痰飮) is peculiar pathological product which is caused by functional difficulty in human fluid replacement and that principally originated functional difficulty between Lung(肺), Spleen(脾), Kidney(腎) and Sam-Cho(三焦). Dam-eum(痰飮) comes into force to disorder about ascending, decending, in and out of human energy circulation and frequently raises functional difficulty in human fluid replacement. As a result of that, it has much effect on action of Spirit(神志). After literatual study on the effect of Dam-eum(痰飮) on Spirit(神志), the result were obtained as follows : Dam-eum is not affecting to Spirit by itself. When Dam-eum is Positive Symptom(實證), Yang Symptom(陽證), mainly it affects to Spirit with Pung(風), Hwa(火), Kyung(驚), Youl(熱). And when it is Negative Symptom(虛症), it mostly affects with 脾胃虛寒, 心血不足. Dam-eum is a factor of causing disharmony between Heart & Kidney(心腎), Heart & Liver(心肝), Stomach & Gall Bladder Line(胃膽經) by 痰迷心竅, 痰火擾心. So it brings out troubles of fluid replacement. These are the main circumstances of affecting Spirit. To cure Disease of Spirit(神志病), which is caused by Dam-eum, there are not only uses the treatment of 理痰氣, 豁痰開竅. There are two treatments to use together. The first treatment is 淸熱, 定驚, 息風, 淸心 that removes fitted toxin. And the other treatment is that keeps the balance of Internal Organs.

A Lubrication Design Optimization of Mechanical Face Seal (미케니컬 페이스 실의 유활 최적설계)

  • Choe, Byeong-Ryeol;Lee, An-Seong;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2989-2994
    • /
    • 2000
  • A mechanical face seal is a tribo-element intended to control leakage of working fluid at the interface of a rotating shaft and its housing. Leakage of working fluid decreases drastically as the clearance between mating seal faces gets smaller. But the very small clearance may result in an increased reduction of seal life because of high wear and heat generation. Therefore, in the design of mechanical face seals a compromise between low leakage and acceptable seal life is important, ant it present a difficult and practical design problem. A fluid film or sealing dam geometry of the seal clearance affects seal lubrication performance very much, and thereby is optimization is one of the main design consideration. in this study the Reynolds equation for the sealing dam of mechanical face seals is numerically analyzed, using the Galerkin finite element method, which is readily applied to various seal geometries, to give lubrication performances, such as opening force, restoring moment, leakage, and axial and angular stiffness coefficients. Then, to improve the seal performance an optimization is performed, considering various design variables simultaneously. For the tested case the optimization ha successfully resulted in the optimal design values of outer and inner seal radii, coning, seal clearance, and balance radius while satisfying all the operation subjected constraints and design variable side-constraints, and improvements of axial and angular stiffness coefficients by 16.8% and 2.4% respectively and reduction of leakage by 38.4% have been achieved.

Optimization of the Anastomosis Angle and Diameter with the Systemic- To-Pulmonary Artery Shunt (대동맥-폐동맥 연결관의 접합각도와 직경의 최적화)

  • Kim, Sung-Min;Park, Sung-Yun;Jun, Jae-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.123-130
    • /
    • 2007
  • Hypoplastic left heart syndrome is currently the most lethal cardiac malformation of the newborn infant. Survival following a Norwood operation depends on the balance between systemic and pulmonary blood flow, which is highly dependent on the fluid dynamics through the interposition shunt between the two circulations. The purpose of this study is an optimization of the systemic-to-pulmonary artery shunt. In this study, We used computational fluid dynamic(CFD) models to determine the velocity profile in a systemic-to-pulmonary artery shunt and suggested a simplified method of calculating the blood flow in the shunt based on Ultrasound systems. We analyzed the flow characteristic variations and oscillatory shear index(OSI) due to the anastomosis angle and shunt diameter changing. Four different CFD models were constructed with the shunt sizes ranging from 3 to 3.5mm. The angle between the brachiocephalic trunk(BCT) and the shunt were $30^{\circ}$ and $45^{\circ}$, respectively. When the diameter is 3.0 mm, the oscillatory shear index decreased by 1.2% at $30^{\circ}$ as opposed to at $45^{\circ}$. When the diameter is 3.5 mm, it increased by 18% more at $30^{\circ}$ as opposed to at $45^{\circ}$. When the joint angle is $30^{\circ}$ and the diameter is 3.0 mm, the oscillatory shear index decreased by 4.1% in comparison with the 3.5 mm diameter. When the angle is $45^{\circ}$ and the diameter is 3.0 mm, the index increased by 14.6% in comparison with the 3.5 mm diameter.

Parametric study of porous media as substitutes for flow-diverter stent

  • Ohta, Makoto;Anzai, Hitomi;Miura, Yukihisa;Nakayama, Toshio
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.2
    • /
    • pp.111-125
    • /
    • 2015
  • For engineers, generating a mesh in porous media (PMs) sometimes represents a smaller computational load than generating realistic stent geometries with computer fluid dynamics (CFD). For this reason, PMs have recently become attractive to mimic flow-diverter stents (FDs), which are used to treat intracranial aneurysms. PMs function by introducing a hydraulic resistance using Darcy's law; therefore, the pressure drop may be computed by test sections parallel and perpendicular to the main flow direction. However, in previous studies, the pressure drop parallel to the flow may have depended on the width of the gap between the stent and the wall of the test section. Furthermore, the influence of parameters such as the test section geometry and the distance over which the pressure drops was not clear. Given these problems, computing the pressure drop parallel to the flow becomes extremely difficult. The aim of the present study is to resolve this lack of information for stent modeling using PM and to compute the pressure drop using several methods to estimate the influence of the relevant parameters. To determine the pressure drop as a function of distance, an FD was placed parallel and perpendicular to the flow in test sections with rectangular geometries. The inclined angle method was employed to extrapolate the flow patterns in the parallel direction. A similar approach was applied with a cylindrical geometry to estimate loss due to pipe friction. Additionally, the pressure drops were computed by using CFD. To determine if the balance of pressure drops (parallel vs perpendicular) affects flow patterns, we calculated the flow patterns for an ideal aneurysm using PMs with various ratios of parallel pressure drop to perpendicular pressure drop. The results show that pressure drop in the parallel direction depends on test section. The PM thickness and the ratio of parallel permeability to perpendicular permeability affect the flow pattern in an ideal aneurysm. Based on the permeability ratio and the flow patterns, the pressure drop in the parallel direction can be determined.

Appearance Rates of Several Substances into Cerebrospinal Fluid of Histamine-treated Rabbits (히스타민 투여시 토끼 뇌척수액으로의 물질 출현율)

  • Kim, Won-Shik;Shin, Dong-Hoon
    • The Korean Journal of Physiology
    • /
    • v.2 no.2
    • /
    • pp.21-31
    • /
    • 1968
  • The appearance rates of antipyrine and urea into cerebrospinal fluid from blood were studied in the rabbits which were in the state of hypotension and of high permeability in the capillary beds following injection of histamine. The alteration in the distribution of electrolytes among various compartments of the brain and the permeability characteristics in the blood-cerebrospinal fluid barrier were also observed. Adult male rabbits, weighing around 2 kg, were used. Twenty four rabbits were divided into 3 groups. Besides the control group, histamine treated rabbits were categorized into 2 groups. $H_1$ consisted of the rabbits showing moderate responses to histamine and ranging from 62 to 80 mmHg in their mean anterial blood pressure. The animals which belong to $H_2-group$ showed severe responses to histamine and the mean anterial blood pressures dropped to 30-50 mmHg. Animals were anesthetized with nembutal, 30mg/kg i.v. The mean arterial blood pressure was read by means of the mercury manometer connected to the femoral artery. The animals, treated with histamine, were kept in hypotensive state at least for 40 minutes before the administration of the test-substances. The test-substances, 300 mg of urea and 200 mg of antipyrine, were dissolved in 3 ml of distilled water and were injected into the ear vein of the rabbit. After 10 minutes elapsed arterial blood sample was taken from the femoral artery and cerebrospinal fluid from the cisterna magna. Brain tissues were also analysed with respect to electrolytes in order to observe the disturbances in the electrolytes balance as well as in the function of the central nervous system. The results obtained were as follow: 1. The ratio of antipyrine concentration in cerebrospinal fluid to that of arterial blood plasma, that was the distribution ratio, was close to unity, revealing a well established equilibrium between the compartments of blood and cerebrospinal fluid in 10 minutes. In other words, there was no diffusion barrier with regard to antipyrine. The ratios over unity which were frequently seen in the histamine treated animals were attributable to the early penetration of the substance into the cerebrospinal fluid. 2. The appearance rates of urea into the cerebrospinal fluid in the histamine treated rabbits were higher in comparison with those of in the control animals. The increasing tendency in the rates was particularly remarkable in the $H_2-group$, showing the enhanced penetration of urea across the boondary. 3. In the htisamine treated $H_2-group$ the concentration of potassium in the blood plasma and cerebrospinal fluid well exceeded the control values and showed 8.5 and 9.0 mEq/l in average, respectively. Simultaneous drops in the brain tissue water were noticed, suggesting the leakage of intracellular potassium. 4. There was a coincidence in the rising pattern of potassium in the blood plasma and in the cerebrospinal fluid of $H_2-group$ and at least partial removal of the blood-cerebrospinal fluid barrier with respect to potassium was suggested in these animals. 5. The concentration of sodium in the blood plasma or in the cerebrospinal fluid showed no significant changes following histamine injection. However, sodium in the brain tissue revealed slight elevation in the histamine treated groups. 6. The ratios of the concentrations of potassium to those of sodium, [K]/[Na] in the brain tissues, were 1.92 in the control 1.82 in the $H_1$ and 1.52 in the $H_2-group$, respectively. The marked drop in the $H_2-group$ might represent neural dysfunction in the extremely hypotensive rabbits.

  • PDF

Residence Time Distribution in the Chromatographic Column: Applications in the Separation Engineering of DNA

  • Park, Young G.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.117-125
    • /
    • 2003
  • Experimental and theoretical works were performed for the separation of large polyelectrolyte, such as DNA, in a column packed with gel particles under the influence of an electric field. Since DNA quickly orient in the field direction through the pores, this paper presents how intraparticle convection affects the residence time distribution of DNAs in the column. The concept is further illustrated with examples from solid -liquid systems, for example, from chromatography Showing how the column efficiency is improved by the use of a n electric field. Dimensionless transient mass balance equations were derived, taking into consideration both diffusion and electrophoretic convection. The separation criteria are theoretically studied using two different Peclet numbers in the fluid and solid phases. These criteria were experimentally verified using two different DNAs via electrophoretic mobility measurements. which showed how the separation position of the DNAs varies in the column in relation to the Peg/Pef values of an individual DNA. The residence time distribution was solved by an operator theory and the characteristic method to yield the column response.

Hydrated Lime Roasting of Precious Metal Ores with A Cyclone Reactor

  • Cho, Chong S.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.53-60
    • /
    • 1997
  • The roasting of pyrite with a cyclone reactor have been studied in terms of investigating the reaction behavior of pyrite. The development of a fundamental model for pyrite oxidation and lime sulfation in a vertical cyclone reactor. The model assumes a chemical control shrinking core behavior for the pyrite and a fluid film control shrinking core behavior for the lime. The oxygen and sulphur dioxide concentrations and the energy balance for the gas, pyrite and lime particles are solved. The model was solved and characterized numerically. Experiments have been performed to study the influence of reaction parameters such as reactor temperatures, pyrite particle sizes, air flow rates, feeding rates, and mixing ratio of pyrite and lime. The oxidation and sulfation products were characterized chemically and physically.

  • PDF

A Study on the Analysis of Various Characteristics for the High Pressure are Discharge System (고압 아아크 방전시스템의 각종 특성 해석에 관한 연구)

  • 지철근;박왕열;이진우
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.5 no.4
    • /
    • pp.35-42
    • /
    • 1991
  • Recently, HID lamps have been considered as important in regard to the trend of energy saving, and increasingly and diversely used in various ways. This paper will show the simulating models concerning high-pressure arc discharge system directly applicable for its design and manufacture, and analyze its various characteristics. For warm-up characteristics, the evaporating process of inner atoms is described in terms of second-order differential equation: for the thermal conduction from are axis to discharge wall and outer bulb, its transfer process is introduced according to five first-order differential equations. Under the steady state satisfying LTE, the time-variant characteristics are suggested by means of time-dependent energy balance equation derived from fluid equations, approximation of radiation energy and material functions in the discharge tube. The simulating models concerning these equations are then applied for high-pressure mercury lamp.

  • PDF

Development of for Mineral Salt Manufacturing System using Deep Sea Water (해양 심층수를 이용한 미네랄소금 제염장치 개발)

  • Kim H. J.;Shin P. K.;Moon D. H.;Jung D. H.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.183-189
    • /
    • 2004
  • Deep ocean water is located in the sea deeper than 200m. At such depth the solar light does not reach, photosynthesis is not performed and nutrition salt is not consumed. Therefore, campared with surface water, Deep Sea Water contains more nutrition salt, such as nitrogen and phosphor. Moreover, it has the good balance of minerals. This Research is primary attempt for apply deep sea water to food industry. New type of mineral salt manufacturing system was developed and high levels of Ca, K, Mg detected from the salt analysis.

  • PDF