• Title/Summary/Keyword: fluid and flow

Search Result 7,251, Processing Time 0.042 seconds

Characteristics of Thermal and Fluid Flows for Different Fire Locations in Underground Combined Cycle Power Plant (화원 위치에 따른 지하 복합 발전 플랜트 내 열유동 특성 연구)

  • Sung, Kun Hyuk;Bang, Joo Won;Lee, Soyeong;Ryou, Hong Sun;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.716-722
    • /
    • 2017
  • The present study numerically investigates the effect of obstacles located in the trajectory of fire plume flow on heat flow characteristics by using Fire Dynamics Simulation (FDS) software in an underground combined cycle power plant (CCPP). Fire size is taken as 10 MW and two different locations of fire source are selected depending on the presence of an obstacle. As the results, when the obstacle is in the trajectory of fire plume, hot plume arrives at the ceiling about 5 times slower in the upper of the fire in comparison to the results without obstacle. In addition, the average propagation time of ceiling jet increases by about 70 % with the distance from the ceiling in the upper of the fire, and it increases mainly about 4 times at the distance of 10 m. Consequently, it is noted that the analysis of heat flow characteristics in the underground CCPP considering fire scenarios is essential to develop the fire detection system for initial response on evacuation and disaster management.

The Study on the improvement of vehicle fuel economy test method according to the characteristics of test fuel (시험용 연료 특성에 따른 자동차 연비측정 방법 개선에 관한 연구)

  • Lee, Minho;Kim, Jeonghwan
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.9-18
    • /
    • 2014
  • These test methods, the current domestic vehicles fuel economy calculation method is tested on a dynamometer for vehicles after you have installed the vehicle, given the test mode(FTP-75 & HWFET mode, etc.) are measured by vehicle emissions and fuel economy by seeking to have the results approach, the carbon balance method. At this point, using the carbon balance method is a test method was developed seeking fuel for a standard fuel properties, where the value of the constant and saved test was measured in THC, CO, $CO_2$ has a value calculation. Therefore, use fuel which is changed every time you test the fuel properties characteristics are not considered exactly. In this study, using the carbon balance method and fluid flow rate of the fuel used in the actual test is measured by comparing the results with the flow measurement methods, properties of the fuel used for the test attribute to study ways that can be considered, taking into account the physical attributes of a more diverse fuel line and fuel economy improved measurement methods that can be reviewed.

Verification of the Viability of Equipotential Switching Direct Current Potential Drop Method for Piping Wall Loss Monitoring with Signal Sensitivity Analysis (등전위 교번식 직류전위차법의 신호 정밀도 검증을 통한 배관 감육 진단 기술에의 적용성 검증)

  • Ryu, Kyung-Ha;Hwang, Il-Soon;Kim, Ji-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.191-198
    • /
    • 2008
  • Flow accelerated corrosion (FAC) phenomenon of low alloy carbon steels in nuclear power plant has been known as one of major degradation mechanisms. It has a potential to cause nuclear pipe rupture accident which may directly impact on the plant reliability and safety. Recently, the equipotential switching direct current potential drop (ES-DCPD) method has been developed, by the present authors, as a method to monitor wall loss in a piping. This method can rapidly monitor the thinning of piping, utilizing either the wide range monitoring (WiRM) or the narrow range monitoring (NaRM) technique. WiRM is a method to monitor wide range of straight piping, whereas NaRM focuses significantly on a narrow range such as an elbow. WiRM and NaRM can improve the reliability of the current FAC screening method that is based on computer modeling on fluid flow conditions. In this paper, the measurements by ES-DCPD are performed with signal sensitivity analyses in the laboratory environment for extended period and showed the viability of ES-DCPD for real plant applications.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

Development of CFD model for Predicting Ventilation Rate based on Age of Air Theory using Thermal Distribution Data in Pig House (돈사 내부 열환경 분포의 공기연령 이론법 적용을 통한 전산유체역학 환기 예측 모델 개발)

  • Kim, Rack-woo;Lee, In-bok;Ha, Tae-hwan;Yeo, Uk-hyeon;Lee, Sang-yeon;Lee, Min-hyung;Park, Gwan-yong;Kim, Jun-gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.61-71
    • /
    • 2017
  • The tracer gas method has an advantage that can estimate total and local ventilation rate by tracing air flow. However, the field measurement using tracer gas has disadvantages such as danger, inefficiency, and high cost. Therefore, the aim of this study was to evaluate ventilation rate in pig house by using the thermal distribution data rather than tracer gas. Especially, LMA (Local Mean Age), which is an index based on the age of air theory, was used to evaluate the ventilation rate in pig house. Firstly, the field experiment was conducted to measure micro-climate inside pig house, such as the air temperature, $CO_2$ concentration and wind velocity. And then, LMA was calculated based on the decay of $CO_2$ concentration and air temperature, respectively. This study compared between LMA determined by $CO_2$ concentration and air temperature; the average error and root mean square error were 3.76 s and 5.34 s. From these results, it was determined that thermal distribution data could be used for estimation of LMA. Finally, CFD (Computational fluid dynamic) model was validated using LMA and wind velocity. The mesh size was designed to be 0.1 m based on the grid independence test, and the Standard $k-{\omega}$ model was eventually chosen as the proper turbulence model. The developed CFD model was highly appropriate for evaluating the ventilation rate in pig house.

Analysis of Natural Ventilation Rates of Venlo-type Greenhouse Built on Reclaimed Lands using CFD (전산유체역학을 통한 간척지 내 벤로형 온실의 자연환기량 분석)

  • Lee, Sang-Yeon;Lee, In-Bok;Kwon, Kyeong-Seok;Ha, Tae-Hwan;Yeo, Uk-Hyeon;Park, Se-Jun;Kim, Rack-Woo;Jo, Ye-Seul;Lee, Seung-No
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.21-33
    • /
    • 2015
  • Recently, the Korean government announced a new development plan for a large-scale greenhouse complex in reclaimed lands. Wind environments of reclaimed land are entirely different from those of inland. Many standard books for ventilation design didn't include qualitative standard for natural ventilation. In this study, natural ventilation rates were analyzed to suggest standard for ventilation design of venlo type greenhouse built on reclaimed land. CFD (Computational Fluid Dynamics) simulation models were designed according to the number of spans, wind conditions and vent openings. The wind profile at a reclaimed land was designed using ESDU (Engineering Sciences Data Unit) code. Using the designed CFD simulation model, ventilation rates were computed using mass flow rate and tracer gas decay method. Additionally computed natural ventilation rates were evaluated by comparing with ventilation requirements. As a result of this study, ventilation rates were decreased with increasing of the number of spans. Ventilation rates were linearly increased with increasing of wind speed. When the wind speed was $1.0\;m{\cdot}s^{-1}$, only side vent was open and wind direction was $45^{\circ}$, homogeneity of ventilation rate at 0~1 m height is the worst. Finally, chart for computing natural ventilation rate was suggested. The chart was expected to be used for establishing standard of ventilation design.

IN-LINE NIR SPECTROSCOPY AS A TOOL FOR THE CONTROL OF FERMENTATION PROCESSES IN THE FERMENTED MEATS INDUSTRY

  • Tamburini, Elena;Vaccari, Giuseppe;Tosi, Simona;Trilli, Antonio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3104-3104
    • /
    • 2001
  • The research described here was undertaken with the aim of monitoring, optimizing and ultimately controlling the production of heterofermentative microbes used as starters in the salami industry. The use of starter cultures in the fermented meats industry is a well-established technique used to shorten and standardize the ripening process, and to improve and control the organoleptic quality of the final product. Starter cultures are obtained by the submerged cultivation of suitable microorganisms in stirred, and sometimes aerated, fermenters where monitoring of key physiological parameters such as the concentration of biomass, substrates and metabolites suffers from the general lack of real-time measurement techniques applicable to aseptic processes. In this respect, the results of the present work are relevant to all submerged fermentation processes. Previous work on the application of on-line NIR spectroscopy to the lactic acid fermentation (Dosi et al. - Monreal NIR1995) had successfully used a system based on a measuring cell included in a circulation loop external to the fermenter. The fluid handling and sterility problems inherent in an external circulation system prompted us to explore the use of an in-line system where the NIR probe is immersed in the culture and is thus exposed to the hydrodynamic conditions of the stirred and aerated fluid. Aeration was expected to be a potential source of problems in view of the possible interference of air bubbles with the measurement device. The experimental set-up was based on an in-situ sterilizable NIR probe connected to the instrument by means of an optical fiber bundle. Preliminary work was carried out to identify and control potential interferences with the measurement, in particular the varying hydrodynamic conditions prevailing at the probe tip. We were successful in defining the operating conditions of the fermenter and the geometrical parameters of the probe (flow path, positioning, etc.) were the NIR readings were reliable and reproducible. The system thus defined was then used to construct and validate calibration curves for tile concentration of biomass, carbon source and major metabolites of two different microorganisms used as salami starters. Real-time measurement of such parameters coupled with the direct interfacing of the NIR instrument with the PC-based measurement and control system of the fermenter enabled the development of automated strategies for the interactive optimization of the starter production process.

  • PDF

Quantitative Analysis of Cystic Fluid Components in Cysticercus cellulosae (유구낭미충(有鉤囊尾蟲) 낭액(囊液)의 아미노산(酸) 및 유리지방산(遊離脂肪酸)의 정량분석(定量分析))

  • Moon, Joon;Chung, Myung-Sook;Joo, Kyoung-Hwan;Rim, Han-Jong
    • Journal of agricultural medicine and community health
    • /
    • v.16 no.2
    • /
    • pp.141-153
    • /
    • 1991
  • Free amino acid(FAA), free fatty acid(FFA), and amino acid obtained by hydrolysis of protein components of cystic fluid(CF) of Cysticercus cellulosae in pig and man were analyzed. FFA was analyzed by gas chromatography using Varian model 2700, and flame ionization detector with 6 feet${\times}$1/4inch glass column. Flow rate of $N_2$ was 30 ml/min, $H_2$ was 30 ml/min, air was 350 ml/min respectively and chart speed was 1 cm/min. Amino acid was analyzed by high performance liquid chromatography using Waters model 441, and fluorescence detector at 338nm/425nm with column of amino acid analyzer. Buffer A of mobile phase was pH 3.05 and pH of buffer B was 9.6 respectively. The results obtained were as follows : Seven FFAs containing 12~18 carbons were detected : Saturated fatty acids were lauric acid ($C_{12}$), myristic acid($C_{14}$), palmitic acid($C_{16}$), Stearic acid($C_{18}$). Unsaturated fatty acids were oleic acid($C_{12}^{=1}$), linoleic acid($C_{12}^{=2}$), and one unidentified fatty acid was detected. Generally much more quantity of FFA was determined in CF obtained from pig than that from man. FFA of the largest quantity was palmitic acid; 0.078 mg/ml. Eighteen FAAs were detected and the largest quantity was alanine. Ouantity of alanine was 386 ug/ml in CF from pig 108 ug/ml in CF from man respectively. while histidine in CF from pig was 273 ug/ml, that from man was only 4.3 ug/ml. Eighteen amino acids were identified by hydrolysis of protein in CF from man. But, histidine was not identified in CF from pig. Amino from pig and ug/ml from man.

  • PDF

Fresh Water Injection Test in a Fractured Bedrock Aquifer for the Mitigation of Seawater Intrusion (해수침투 저감을 위한 균열암반 대수층 내 담수주입시험)

  • Shin, Je-Hyun;Byun, Joong-Moo
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.371-379
    • /
    • 2010
  • Fresh water injection test in a fractured bedrock aquifer was applied as an efficient approach to lower saline concentrations in the saltwater-freshwater transition zone formed by seawater intrusion in a coastal area. The methodology and effectiveness of fresh water injection for hydraulically controlling seawater intrusion is overwhelmingly site dependent, and there is an urgent need to characterize the permeable fractures or unconsolidated porous formations which can allow for seawater flow and transport. Considering aquifer characteristics, injection and monitoring boreholes were optimally designed and completed to inject fresh water through sand layer and fractured bedrock, respectively. We devised and used the injection system using double packer for easy field operation and maintenance. Overall fracture distribution was systematically identified from borehole image logs, and the section of fresh water injection was decided from injection test and monitoring. With fresh water injection, the fluid electrical conductivity of the monitoring well started to be lowered by the inflow of fresh water at the specific depth. And this inflow leaded to the replacement of the fluid in the upper parts of the borehole with fresh water. Furthermore, the injection effect lasted more than several months, which means that fresh water injection may contribute to the mitigation of seawater intrusion in a coastal area.

A Study on the Surface Wind Characteristics in Suwon City Using a GIS Data and a CFD Model (GIS 자료와 CFD 모델을 이용한 수원시 지표 바람 특성 연구)

  • Kang, Geon;Kim, Min-Ji;Kang, Jung-Eun;Yang, Minjune;Choi, Seok-Hwan;Kang, Eunha;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1837-1847
    • /
    • 2021
  • This study investigated wind corridors for the entire Suwon-city area using a geographic information system and a computational fluid dynamics model. We conducted numerical simulations for 16 inflow wind directions using the average wind speeds measured at the Suwon automated synoptic observation system (ASOS) for recent ten years. We analyzed the westerly (dominant wind direction) and easterly cases (not dominant but strong wind speed) in detail and investigated the characteristics of a wind speed distribution averaged using the frequencies of 16 wind directions as weighting factors. The characteristics of the wind corridors in Suwon city can be summarized as; (1) In the northern part of Suwon, complicated flows were formed by the high mountainous terrain, and strong (weak) winds and updrafts (downdrafts) were simulated on the windward (leeward) mountain slope. (2) On the leeward mountain slope, a wind corridor was formed along a valley, and relatively strong airflow flowed into the residential area. (3) The strong winds were simulated in a wide and flat area in the west and south part of Suwon city. (4) Due to the friction and flow blocking by buildings, wind speeds decreased, and airflows became complicated in the downtown area. (5) Wind corridors in residential areas were formed along wide roads and areas with few obstacles, such as rivers, lakes, and reservoirs.