• Title/Summary/Keyword: fluid and flow

Search Result 7,251, Processing Time 0.039 seconds

CFD Analysis on the Fresh Air Distribution in the Catalytic Converter Varying Secondary Air Injector Position (2차 공기 분사 위치에 따른 촉매 내 공급 공기 분포에 대한 전산 유동해석)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.31-36
    • /
    • 2010
  • SAI(Secondary Air Injection) system has been studied widely as one of the promising countermeasure for reducing HC emission at cold start. In this paper, in order to find out the optimal position of SAI, computational thermal fluid analysis on exhaust system adapted SAI system is performed using commercial 3-D CFD code, CFX. The present results showed that SAI position strongly affected the uniformity of air distribution in front of catalyst. And also through the decision process of optimal position of SAI, new index, uniformity of air distribution($U_{\phi}$) is proposed to define it quantitively. Because $U_{\phi}$ is very simple equation and similar with flow uniformity, it is very easy to figure out the physical meaning and to apply it to practices. Finally, we applied the index $U_{\phi}$ to the decision process of the optimal position of SAI, so that we could get the clear comparison results.

Optimization of Cleaning Parameters in Cryogenic $CO_2$ Cleaning Process (극저온 $CO_2$ 세정공정의 세정인자 최적화)

  • Lee, Seong-Hoon;Seok, Jong-Won;Kim, Pil-Kee;Oh, Seung-Hee;Seok, Jong-Hyuk;Oh, Byung-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.109-115
    • /
    • 2008
  • The cleaning process of contaminant particles adhering to the microchips, integrated circuits (ICs) or the like is essential in modern microelectronics industry. In the cleaning process particularly working with the application of inert gases, the removal of contaminant particles of submicron scale is very difficult because the particles are prone to reside inside the boundary layer of the working fluid, The use of cryogenic $CO_2$ cleaning method is increasing rapidly as an alternative to solve this problem. In contrast to the merits of high efficiency of this process in the removal of minute particles compared to the others, even fundamental parametric studies for the optimal process design in this cleaning process are hardly done up to date, In this study, we attempted to measure the cleaning efficiency with the variations of some principal parameters such as mass flow rate, injection distance and angle, and tried to draw out optimal cleaning conditions by measuring and evaluating an effective cleaning width called $d_{50}$.

Investigation of FIV Characteristics on a Coaxial Double-tube Structure (동심축 이중관 구조에서 유동기인진동 특성 고찰)

  • Song, Kee-Nam;Kim, Yong-Wan;Park, Sang-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1108-1118
    • /
    • 2009
  • A Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source of the order of $950^{\circ}C$ for nuclear hydrogen generation, which can produce hydrogen from water or natural gas. A primary hot gas duct (HGD) as a coaxial double-tube type cross vessel is a key component connecting a reactor pressure vessel and an intermediate heat exchanger in the VHTR. In this study, a structural sizing methodology for the primary HGD of the VHTR is suggested in order to modulate a flow-induced vibration (FIV). And as an example, a structural sizing of the horizontal HGD with a coaxial double-tube structure was carried out using the suggested method. These activities include a decision of the geometric dimensions, a selection of the material, and an evaluation of the strength of the coaxial double-tube type cross vessel components. Also in order to compare the FIV characteristics of the proposed design cases, a fluid-structure interaction (FSI) analysis was carried out using the ADINA code.

Development of a 300 HP Class Turbo Blower with Air Foil Bearings (공기 포일 베어링을 사용하는 300마력급 터보송풍기 개발)

  • Kim, Kyeong-Su;Lee, Ki-Ho;Park, Ki-Cheol;Lee, Si-Woo;Kim, Seung-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.331-334
    • /
    • 2006
  • Air foil bearings have been attempted for application to industrial turbo machines, since they have several advantages over oil bearings in terms of endurance, simplicity, environment-friendliness, efficiency, sound and vibration, and small turbo machines with air foil bearings are in the market as the result. Recently, researches on widening the application spectrum of air foil bearings are in progress worldwide. In this paper, a 300 HP class turbo blower using air foil bearings is introduced. The turbo blower has a high speed PMSM(Permanent Magnet Synchronous Motor) driving a compressor, and air flow rate is designed to be $180\;m^3/min$ at pressure ratio of 1.6. The maximum rotational speed is set to 17,000 RPM to maximize the total efficiency with the result that the weight of rotor assembly is 26kg, which is expected to be the largest turbo machine with air foil bearings ever developed in the world.

  • PDF

Numerical Analysis of Microchannel Flows Using Langmuir Slip Model (Langmuir 미끄럼 모형을 사용한 미소채널 유동의 수치해석)

  • Maeng, Ju-Seong;Choe, Hyeong-Il;Lee, Dong-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.587-593
    • /
    • 2002
  • The present research proposes a pressure based approach along with Langmuir slip condition for predicting microscale fluid flows. Using this method, gaseous slip flows in 2 -dimensional microchannels are numerically investigated. Compared to the DSMC simulation, statistical errors could be avoided and computing time is much less than that of the aforementioned molecular approach. Maxwell slip boundary condition is also studied in this research. These two slip conditions give similar results except for the pressure nonlinearity at high Knudsen number regime. However, Langmuir slip condition seems to be more promising because this does not need to calculate the streamwise velocity gradient accurately and to calibrate the empirical accommodation coefficient. The simulation results show that the proposed method using Langmuir slip condition is an effective tool for predicting compressibility and rarefaction in microscale slip flows.

Experimental Study on Heat Transfer Performance of Plate Type Absorber with Variation of Solution Flow Rate (용액유량에 따른 플레이트 흡수기의 흡수 열전달 특성 실험)

  • Moon, C.G.;Bang, G.S.;Kim, J.D.;Yoon, J.I.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1548-1553
    • /
    • 2003
  • An experimental study of the absorption process of water vapor into a lithium bromide solution was performed. For the purpose of development of high performance absorption chiller/hater utilizing lithium bromide solution as working fluid, it is the most effective to improve the performance of absorber with the largest heat transfer area of the four heat exchangers. The experimental apparatus was composed of a plate type absorber which can increase the heat exchange area per unit volume to investigate more detail characteristics instead of the conventional type, horizontal tube bundle type. The size of plate absorbers were made for $0.4m{\times}0.6m$ and the design object of a refrigeration capacity was lRT. In this experiment, three kind plate absorbers which were flat plate, dimple plate and groove plate were used. The results were less than the design object values, that is, the refrigeration capacity was about $0.3{\sim}0.4RT$ and the overall heat transfer coefficient was $500{\sim}600kcal/m^2h^{\circ}C$ at the standard conditions.

  • PDF

In-Service Identification of the Heterogeneous Zone in Petrochemical Pipelines by Using Sealed Gamma-Ray Sources $(^{60}Co,\;^{137}Cs)$

  • Kim, Jin-Seop;Jung, Sung-Hee;Kim, Jong-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.169-173
    • /
    • 2006
  • In-service diagnoses of pipeline facilities are important for a systematic maintenance of them. Field applications by using sealed gamma-ray sources $(^{60}Co,\;^{137}Cs)$ were performed to identify the heterogeneous zone in the pipelines of a distillation tower and a flare stack respectively. From the results, the heterogeneous zones in the pipelines were successfully identified. In the case of the pipeline connected to the distillation tower, a vapor pocket was detected in the fluid under hydrodynamic conditions, which could explain the reason for a decrease of the flow rate. In another case, an area with some amount of catalyst deposits was found at the bottom of the gas pipeline which was connected to the flare stack. And these findings provided important information for the process operators. Diagnosis technique by using gamma radiation sources has been proven to be an effective and reliable method for providing information on a media distribution in a facility.

Effect of Chamfering Top Corners on Liquid Sloshing in the Three-dimensional Rectangular Tank (챔퍼가 3차원 사각 탱크 내부의 액체 슬로싱에 미치는 영향)

  • Jung, Jae-Hwan;Lee, Chang-Yeol;Yoon, Hyun-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.508-516
    • /
    • 2010
  • This study aims at investigating the effect of the chamfer on the liquid sloshing in the three-dimensional (3D) rectangular tank. In order to simulate the 3D incompressible viscous two-phase flow in the 3D tank with partially filled liquid, the present study has adopted the volume of fluid (VOF) method based on the finitevolume method which has been well verified by comparing with the results of the relevant previous researches. The effects of the chamfering top corners of the tank on the liquid sloshing characteristics have been investigated. The angle of the chamfering top corners (${\theta}$) has been changed in the range of $0^{\circ}{\leq}{\theta}{\leq}60^{\circ}$(${\Delta}{\theta}=15^{\circ}$) to observe the free surface behavior, and the effect on wall impact load. Generally, as the angle of the chamfering top corners increases, the impact pressure on the upper knuckle point decreases. However it seemed that a critical angle of the chamfering top corners exists to reveal the lowest impact pressure on the wall.

A Study on the Improvement of Thermal Environment by a method using thermometers and computer simulations on the Atrium (실측 분석기법과 시뮬레이션 분석 기법에 의한 아트리움 열환경 개선에 관한 연구)

  • Lee, So-Yeun;An, Jung-Soo;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.28-34
    • /
    • 2009
  • The atrium in the building has many advantages including its aesthetic and functional effect. But the upper part of the atrium has the thermal problem of overheating due to insolation through the window. But natural ventilation aided buoyancy effect can be a solution to make comfortable indoor environment. Proper design of openings is very important to improve thermal environment in the atrium. In this study, thermal evaluations were performed to improve thermal environment in the atrium. Indoor thermal environment of an atrium at Seoul was measured in the field and simulated with Computational Fluid Dynamics( CFD) code. The turbulent flow model adopted is $K-{\varepsilon}$ model. The results of computer simulations are compared with the measurements at the point in the atrium. In order to improve the indoor ventilation environment of the atrium, thermal environment evaluations of six alternatives were conducted. After evaluations of the results, the design guidelines of an atrium are suggested.

A Study on the Helically Coiled Heat Exchanger of Small Diameter Tubes (극세관 헬리컬 코일형 열교환기에 관한 연구)

  • Kim, Ju-Won;Kim, Jeong-Hun;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1492-1499
    • /
    • 2001
  • In order to develop the compact and flexible heat exchangers, we made the helically coiled heat exchangers. They can be manufactured with small diameter copper tubes without the need for fins; inner diameter=1.0 mm, straight tube length=1.5 m. The experiments were carried out with the following conditions; evaporation pressure=0.6 MPa, air velocity=0.7 ∼ 1.7 m/s, and working fluid=R-22. Pressure drop and heat transfer coefficient of heat exchangers were experimented according to the air velocity. The results of heat transfer coefficient show a 35% beneficial increase fur these heat exchangers over the other covered fin-tube heat exchangers. A cooling capacity of about 3 kW was obtained with an air velocity of 1.5 m/s. The distribution header has also been designed fur efficient distribution of refrigerant flow.