• Title/Summary/Keyword: fluid and flow

Search Result 7,252, Processing Time 0.037 seconds

Assessment of Observation Environment for Surface Wind in Urban Areas Using a CFD model (CFD 모델을 이용한 도시지역 지상바람 관측환경 평가)

  • Yang, Ho-Jin;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.449-459
    • /
    • 2015
  • Effects of buildings and topography on observation environment of surface wind in central regions of urban areas are investigated using a computational fluid dynamics (CFD) model. In order to reflect the characteristics of buildings and topography in urban areas, geographic information system (GIS) data are used to construct surface boundary input data. For each observation station, 16 cases with different inflow directions are considered to evaluate effects of buildings and topography on wind speed and direction around the observation station. The results show that flow patterns are very complicated due to the buildings and topography. The simulated wind speed and direction at the location of each observation station are compared with those of inflow. As a whole, wind speed at observation stations decreases due to the drag effect of buildings. The decrease rate of wind speed is strongly related with total volume of buildings which are located in the upwind direction. It is concluded that the CFD model is a very useful tool to evaluate location of observation station suitability. And it is expected to help produce wind observation data that represent local scale excluding the effects of buildings and topography in urban areas.

Development of a Fan Simulator Using Supercomputer (슈퍼컴퓨터를 활용한 팬 시뮬레이터 개발)

  • Kim, Myung-Il;Kim, Seung-Hae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.805-813
    • /
    • 2012
  • A fan is the most common air flow machinery and is being used in various different industries such as for heavy machinery, home appliances and automobile. An axial fan has blades that force air to move parallel to the shaft about which the blades rotate. This type of fan is used in a wide variety of applications, ranging from small cooling fans for electronics to the giant fans used in wind tunnels. An axial fan generating large air volume used to cool equipments, but is less efficient. A sirocco fan is a efficient device for moving air by centrifugal force and can generate high pressure. Fans that affect the performance and noise of a product are important components. It is also a time and budget consuming equipment to develop a fan through physical experiments. In order to overcome this problem, we have designed and developed a fan simulator for axial and sirocco fan's fluid analysis using supercomputer. Performance and noise prediction based on datamining without numerical analyses is also developed for the conceptual design of a fan.

Evaluation of Course Stability Performance for Tanker using CFD (CFD를 이용한 Tanker의 침로안정성 평가)

  • Hong, Chun-Beom;Yang, Hee-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.523-529
    • /
    • 2008
  • The course stability performance for tankers is evaluated by computational fluid dynamics. In the present work, a Reynolds averaged Navier-Stokes (RANS) code is applied to a maneuvering problem covering the pure drift and yaw motions. The purposes of this study are to evaluate the hydrodynamic force in the bare hull (AFRAMAX) in pure drift and yaw motion and to provide information about the trends in the forces and moments when the rudder angles are varied. The flow simulation is performed by FLUENT. The CFD code is examined to find the optimistic computational condition such as size of grid, turbulence model and initial condition. The hydrodynamic derivatives in drift and pure yaw motion are estimated by the numerical simulation, and then the stability levers are calculated. It is confirmed that the computations show the superiority and inferiority of course stability performance according to the hull forms. Finally, the CFD code is applied to the estimation of the rudder forces when the rudder angles are varied. The propeller effect expressed by the body force distribution is also included.

Performance Characteristic of Large Diameter Oval Finned-Tube Heat Exchanger for Dryer (건조기용 타원관 대구경 핀-관 열교환기의 성능특성)

  • Bae, Kyung-Jin;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.22-27
    • /
    • 2014
  • The objectives of this paper are to obtain an empirical equations regarding the correlations between heat transfer and pressure drop of oval fin-tube heat exchanger having large diameter using wilson plot method. It was difficult to find any recommendable heat transfer and friction factor correlation available for our large diameter experimental cases. Overall heat transfer coefficients are composed of the heat transfer coefficients both inside and outside tubes. The resulting empirical correlations for the Nui and f-factor are given as $Nu_i=0.0146Re^{0.809}Pr^{0.3}$ and $f=4.366Re^{-0.64}$, respectively. The empirical correlations of the Nui and f-factors were developed for the large diameter oval finned-tube heat exchanger as a function of the Reynolds number. As the EG(Ethylene glycol) and air flow rate increases, the heat transfer rate and pressure drop is increased largely.

Motion Simulation of FPSO in Waves through Numerical Sensitivity Analysis (수치 민감도 해석을 통한 파랑중 FPSO운동 시뮬레이션)

  • Kim, Je-in;Park, Il-Ryong;Suh, Sung-Bu;Kang, Yong-Duck;Hong, Sa-Young;Nam, Bo-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.166-176
    • /
    • 2018
  • This paper presents a numerical sensitivity analysis for the simulation of the motion performance of an offshore structure in waves using computational fluid dynamics (CFD). Starting with 2D wave simulations with varying numerical parameters such as grid spacing and CFL value, proper numerical conditions were found for accurate wave propagation that avoids numerical diffusion problems. These results were mapped on 2D error distributions of wave amplitude and wave length against the numbers of grids per wave length and per wave height under a given CFL condition. Finally, the 2D numerical sensitivity result was validated through CFD simulation of the motion of a FPSO in waves showing good accuracy in motion RAOs compared with existing potential flow solutions.

Extraction and Separation of Eicosapentaenoic Acid from Sardine by using Supercritical $CO_2$ Extraction (초임계 추출에 의한 정어리에서 Eicosapentaenoic Acid의 추출 및 분리)

  • 이병호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.5
    • /
    • pp.629-635
    • /
    • 1993
  • Full fat sardine oil is readily extracted with supercritical carbon dioxide($SC-CO_2$) at pressure of 5,000~8,000 psig. and temperature of 50~$80^{\circ}C$. Under these conditions $SC-CO_2$ has the density of fluid and diffusivity of gas. Therefore, equilibrium solubility is readily achieved in a column batch extractor which permits high gas flow rates. The results showed that extraction was higher at the pressure of 6,000 psig. and $60^{\circ}C$. Fish oil extracted with $SC-CO_2$ is lighter in color, smells less and contains less iron and phosphorus than hexane-extracted crude oil from the same sardine oil. Eicosapentaenoic acid($C_{20-5}$) in sardine oil was fractionated at 90.5% by the $SC-CO_2$ extractor with heat exchange.

  • PDF

Flow Dynamics Near End-To-End Anastomoses - Part I. In Vitro Compliance Measurement -

  • Kim, Y.H
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.165-174
    • /
    • 1992
  • Compliance mismatch across an end-to-end anastomosis was measured In the In vitro experimental setup. A 35mm camera was used and Image process was done in Gould/ DeAnza Image processor. The results showed that compliances of Penrose tubing and synthetic PTFE grafts were In good agreement with the previously reported In vivo data. PTFE grafts exhibited a nonlinear behavior with compliance decreasing with Increasing transmural pressure, whereas the compliance of the Penrose tubing remained relatively constant within the range of the pressures in which data were obtained. The lumen cross sections at the anastomosis were affected by the suture and the mismatch In compliance between the Penrose tubing and vascular grafts. The varla~lons In the lumen dtameter at the anastomosis was more pronounced with increasing transmural pressures. From the present study, it was clearly demonstrated that the compliance of prosthetic grafts Is much lower than that of the arteries. In addition to the hemodynamlc consequences, compliance mismatch across the anastomosis has been known to lead to Increased anastomotlc and suture stresses with resultant suture line dehlscence and false aneurysm formation. Thus, there are good hemodynamic reasons to suppose that Introduction of a less compliant arterial graft Into the arterial circulation wlll be damaging and that grafts should be made to match the elastic behavior of their host arteries as closely possible.

  • PDF

Optimal Design of Gerotor (Ellipse1-Elliptical Involute-Ellipse2 Combined Lobe Shape) for Improving Fuel Efficiency and Reducing Noise (연비개선 및 소음저감을 위한 지로터 최적설계 (타원 1-타원형 인벌루트-타원2))

  • Kwak, Hyo Seo;Li, Sheng Huan;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.927-935
    • /
    • 2016
  • A gerotor is suitable for miniature manufacturing because it has a high discharge per cycle and a simple structure, while also being widely used as lubrication oil of engines and the hydraulic source of automatic transmission. In the automobile industry, it has been necessary to continuously improve the flow rate and noise of internal gear pumps for better fuel efficiency through optimal gerotor design. In this study, to obtain an optimal gerotor with an ellipse-elliptical involute-ellipse combined lobe shape, an automatic program was developed for calculating performance parameters and drawing a gerotor profile. An oil pump was assembled with the optimal gerotor together with the port used at the actual field and CFD analysis was performed on this assembly using Ansys-CFX. A performance test for the oil pump was carried out and showed good agreement with the results obtained from the theoretical analysis and the CFD analysis.

Development of Integrated HVAC Noise Analysis Program for Ships (선박용 통합 HVAC 소음해석 프로그램 개발)

  • Han, Ju-Bum;Hong, Suk-Yoon;Song, Jee-Hun;Kim, Nho-Seong;Chun, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.588-593
    • /
    • 2011
  • The Main design parameters of ship HVAC systems are pressure drop and noise analysis of ducts. The Noise prediction for HVAC(Heating, Ventilating and Air Conditioning) systems are normally performed by empirical method suggested by NEBB(National Environmental Balancing Bureau, 1994), but NEBB's method is not suitable for the ship HVAC systems. In this paper, numerical analysis methods are used to develop a noise prediction method for the ship HVAC systems, especially for large ducts. To develop regression formula of attenuation of sound pressure level in large duct, Boundary Element Method(BEM) is used. Using dynamic loss coefficient which is suggested by ASHRAE fitting data base and numerical methods of HVAC noise analysis, integrated HVAC noise analysis of Program is developed. The developed program can present pressure drop and noise analysis of the ship HVAC systems. To verify the accuracy and convenience of the developed program, prediction of HVAC system for Semi-Submersible Drilling RIG is carried out and the results are compared with measurement of noise level during sea trial.

  • PDF

Bi2212 Tube Characteristics for SCFCL (한류기용 Bi2212 튜브의 특성)

  • Lee, N.I.;Jang, G.E.;Oh, I.S.;Park, G.B.
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.174-178
    • /
    • 2006
  • For the practical application on SCFCL, Bi2212 tubes were fabricated by Centrifugal Forming Process (CFP) in terms of many different processing parameters. Typical sizes of tubes were 60, 150 mm in length and 2.5, 3.5, 4.8 mm in thickness. Initially powder was melted by induction heating. The optimum range of melting temperatures and preheating temperature were $1100^{\circ}C$ and $500^{\circ}C$ for 30min respectively. The nominal mold rotating speed was around 1000 RPM. A tube was annealed at $840^{\circ}C$ for 80 hours in oxygen atmosphere. The tube of 50mm x 70mm x 2.5mm, rotated with 1000 RPM showed $I_c=890\;A\;and\;T_c=80$. It was found that the tube processed with faster rate of mold rotation speed, thinner tube thickness and shorter tube length shows better electric characteristics as compared with the tube normally processed. In order to study the uniformity heat and fluid flow analysis tool was adopted along tube.

  • PDF