• Title/Summary/Keyword: fluid and flow

Search Result 7,252, Processing Time 0.036 seconds

Modeling and Validation of a Liquid Propellant Supply System in Steady States (액체 추진제 공급시스템의 정특성 모델링 및 검증)

  • Lee, Juyeon;Ki, Wonkeun;Huh, Hwanil;Roh, Tae-seong;Lee, Hyoung Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.143-154
    • /
    • 2020
  • The mathematical modeling applying experimental coefficients to a conventional model was validated through the hydraulic test for the components and the full system of a small-sized liquid rocket engine's propellant supply system. According to the simulations, pressures difference for the fluid resistance components and the pump were mainly predicted. In order to improve the modeling accuracy, the loss coefficients obtained by the empirical method were applied to the modeling. Based on the governing equation of the flow or the well known empirical equation, the method of deriving the empirical coefficients was summarized and the coefficients were presented for the commercial products used in this study. The prediction results by modeling were in good agreement with the experimental data. Through the comparison with the experimental data, the factors affecting the accuracy of the simulation were analyzed and improving methods of the accuracy was proposed.

Deup1 Expression Interferes with Multiciliated Differentiation

  • Miram Shin;Jiyeon Lee;Haeryung Lee;Vijay Kumar;Jaebong Kim;Soochul Park
    • Molecules and Cells
    • /
    • v.46 no.12
    • /
    • pp.746-756
    • /
    • 2023
  • A recent study revealed that the loss of Deup1 expression does not affect either centriole amplification or multicilia formation. Therefore, the deuterosome per se is not a platform for amplification of centrioles. In this study, we examine whether gain-of-function of Deup1 affects the development of multiciliated ependymal cells. Our time-lapse study reveals that deuterosomes with an average diameter of 300 nm have two different fates during ependymal differentiation. In the first instance, deuterosomes are scattered and gradually disappear as cells become multiciliated. In the second instance, deuterosomes self-organize into a larger aggregate, called a deuterosome cluster (DC). Unlike scattered deuterosomes, DCs possess centriole components primarily within their large structure. A characteristic of DC-containing cells is that they tend to become primary ciliated rather than multiciliated. Our in utero electroporation study shows that DCs in ependymal tissue are mostly observed at early postnatal stages, but are scarce at late postnatal stages, suggesting the presence of DC antagonists within the differentiating cells. Importantly, from our bead flow assay, ectopic expression of Deup1 significantly impairs cerebrospinal fluid flow. Furthermore, we show that expression of mouse Deup1 in Xenopus embryos has an inhibitory effect on differentiation of multiciliated cells in the epidermis. Taken together, we conclude that the DC formation of Deup1 in multiciliated cells inhibits production of multiple centrioles.

Effect of Compressibility on Flow Field and Fiber Orientation in the Filling Stage of Injection Molding (사출성형의 충전시 고분자용융액의 압축성이 유동장과 단섬유 배향에 미치는 영향)

  • Lee, S.C.;Ko, J;Youn, J.R.
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.217-226
    • /
    • 1998
  • The anisotropy caused by the fiber orientation, which is inevitably generated by the flow during injection molding of short fiber reinforced polymers, greatly influences dimensional accuracy, mechanical properties, and other quality of the final product. Since the filling stage of the injection molding process plays a vital role in determining fiber orientation, an accurate analysis of flow field for the filling stage is needed. Unbalanced filling occurs when a complex or a multi-cavity mold is used leading to development of regions where the fiber suspension is under compression. It is impossible to make an accurate calculation of the flow field during filling with the analysis assuming incompressible fluid. A mold with four cavities with different filling times was produced to compare the numerical analysis results with the experimental data. There was a good agreement between the experimental and theoretical results when the compressibility of the polymer melt was considered for the numerical simulation. The fiber orientation states for compressible and incompressible fluids were also compared qualitatively as well as quantitatively in this study.

  • PDF

Internal Flow Analysis of Urea-SCR System for Passenger Cars Considering Actual Driving Conditions (운전 조건을 고려한 승용차용 요소첨가 선택적 촉매환원장치의 내부 유동 해석에 관한 연구)

  • Moon, Seong Joon;Jo, Nak Won;Oh, Se Doo;Lee, Ho Kil;Park, Kyoung Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.127-138
    • /
    • 2016
  • Diesel vehicles should be equipped with urea-selective catalytic reduction(SCR) system as a high-performance catalyst, in order to reduce harmful nitrogen oxide emissions. In this study, a three-dimensional Eulerian-Lagrangian CFD analysis was used to numerically predict the multiphase flow characteristics of the urea-SCR system, coupled with the chemical reactions of the system's transport phenomena. Then, the numerical spray structure was modified by comparing the results with the measured values from spray visualization, such as the injection velocity, penentration length, spray radius, and sauter mean diameter. In addition, the analysis results were verified by comparison with the removal efficiency of the nitrogen oxide emissions during engine and chassis tests, resulting in accuracy of the relative error of less than 5%. Finally, a verified CFD analysis was used to calculate the interanl flow of the urea-SCR system, thereby analyzing the characteristics of pressure drop and velocity increase, and predicting the uniformity index and overdistribution positions of ammonia.

PDI-like Enzyme in Human Follicular Fluid Converts 72 kDa Gelatinase into GA110 (사람 난포액에 존재하는 72 kDa Geletinase로부터 GA110을 만드는 PDI-like PDI-like Enzyme)

  • Kim Jisoo;Kim Haekwon
    • Development and Reproduction
    • /
    • v.7 no.2
    • /
    • pp.105-112
    • /
    • 2003
  • Previously, we discovered a new MMP-2 isoform GA110, of which appearance in human follicular fluid(FF) and serum was increased by EDTA. The present study was conducted to investigate how GAI 10 can appear by EDTA. To examine possible involvement of protein disulfide isomerase(PDI), an enzyme responsible for the dimerization of protein via disulfide formation, effect of PDI inhibitor on the appearance of GA110 by EDTA was investigated. When PDI inhibitor added to FF before EDTA treatment, the gelatinolytic activity of GA110 was abolished in a concentration dependent manner. By contrast, the activity of 72 kDa gelatinase increased. However, the PDI inhibitor added to FF after EDTA treatment, the gelatinolytic activity of GA110 was unaffected. To find out the nature of the enzyme which converts 72 kDa gelatinase into GAI 10, chromatographic separation method of FF proteins was done. Using hydroxyapatite column, fractions rich in 72 kDa gelatinase were isolated and pooled. By using this pool as substrate for the 72 kDa converting enzyme, protein fractions containing the converting activity were obtained from chromatographic separation of FF onto glutathione sepharose fast flow column. When immunoblotting was performed on this enzymatically active protein fractions against polyclonal anti-PDI antibody, distinct immunoreactivity was observed, although appeared in smaller molecular weight region. Based on these observations, it is suggested that the appearance of GAI 10 in FF by EDTA treatment could be due to an activation of PDI-like enzyme, which dimerizes 72 kDa gelatinase into GAI 10 via the formation of disulfide bond between molecules.

  • PDF

The Contact and Parallel Analysis of Smoothed Particle Hydrodynamics (SPH) Using Polyhedral Domain Decomposition (다면체영역분할을 이용한 SPH의 충돌 및 병렬해석)

  • Moonho Tak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.21-28
    • /
    • 2024
  • In this study, a polyhedral domain decomposition method for Smoothed Particle Hydrodynamics (SPH) analysis is introduced. SPH which is one of meshless methods is a numerical analysis method for fluid flow simulation. It can be useful for analyzing fluidic soil or fluid-structure interaction problems. SPH is a particle-based method, where increased particle count generally improves accuracy but diminishes numerical efficiency. To enhance numerical efficiency, parallel processing algorithms are commonly employed with the Cartesian coordinate-based domain decomposition method. However, for parallel analysis of complex geometric shapes or fluidic problems under dynamic boundary conditions, the Cartesian coordinate-based domain decomposition method may not be suitable. The introduced polyhedral domain decomposition technique offers advantages in enhancing parallel efficiency in such problems. It allows partitioning into various forms of 3D polyhedral elements to better fit the problem. Physical properties of SPH particles are calculated using information from neighboring particles within the smoothing length. Methods for sharing particle information physically separable at partitioning and sharing information at cross-points where parallel efficiency might diminish are presented. Through numerical analysis examples, the proposed method's parallel efficiency approached 95% for up to 12 cores. However, as the number of cores is increased, parallel efficiency is decreased due to increased information sharing among cores.

An Experimental Study on Absorber with Spiral Tube in Absorption Heat Pump (흡수열펌프에서 나선형 관이 설치된 흡수기의 실험적 연구)

  • Min, Byong-Hun
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.71-75
    • /
    • 2010
  • The efficient performance of absorber is of great importance for the absorption heat pump cycle. The experimental study of absorber with spiral tube of tangential feeding of liquid phase has been investigated using methanol-glycerine as a working fluid. The effect of change in absorber operating conditions was analyzed to improve the performance. The increase in solution flow rate and cooling flow rate positively affects the absorber performance while an increse in the solution concentration negatively affects the absorber performance. The results showed that mass absorption flux was in the range of $0.2{\sim}0.6kgm^{-2}sec^{-1}$, the solution heat transfer coefficient between 1.6 and $4.2kwm^{-2}K^{-1}$, the absorber thermal load from 0.9 to 1.5kw and the mass transfer coefficient from 0.9 to 1.7 m/sec.

Control of the Base Pressure of the Supersonic Jet Using an Orifice (오리피스를 사용한 초음속 제트에서의 기저 압력 제어에 관한 연구)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.51-57
    • /
    • 2012
  • Base pressure at the base of high-speed jet has long been one of the important issues from both the view points of fluid dynamics as well as practical engineering applications. The base pressure characteristics of incompressible flows have been well known to date. However, the base pressure at transonic or supersonic speeds would be different due to the compressibility effects and shock waves. In the present paper, a CFD study has been performed to understand the base pressure characteristics at transonic and supersonic speeds, prior to experimental work. An emphasis is placed on the control of the base pressure using a simple orifice. A variety of supersonic jet plumes have been explored to investigate the flow variables influencing the base pressure. The results obtained were validated with existing experimental data and discussed in terms of the base pressure and discharge coefficient of the orifice.

A Study of Efficient Ventilation System in Deep Mines (심부 광산의 효율적 환기 시스템에 관한 연구)

  • Song, Doo-Hwan;Kim, Yun-Kwang;Kim, Teak-Soo;Kim, Sang-Hwan
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.168-174
    • /
    • 2016
  • The working environment is deteriorated due to a rise in temperature of a coal mine caused by increase of its depth and carriage tunnels. To improve the environment, the temperature distribution resulted by using the fan type ventilation system aiming for the temperature drop is calculated by using a fluid dynamic analysis program. The analysis shows that A coal mine needs 6,152 m3 min-1 for in-flow ventilation rate but the total input air flowrate is 4,710 m3 min-1, 1,442 m3 min-1 of in-flow ventilation rate shortage and the temperature between the carriage tunnel openings and the workings with exhausting ventilation system type is 2~3 ℃ less than that with blowing ventilation system type. The exhausting ventilation system type would be more effective than blowing ventilation system when the distance between the carriage tunnel openings and the workings is relatively far.

Theoretical Analysis of the Charging Process with Perfectly Mixed Region in Stratified Thermal Storage Tanks (완전혼합영역을 갖는 성층축열조의 충전과정에 대한 이론적인 해석)

  • Yoo, H.;Pak, E.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.184-195
    • /
    • 1995
  • A theoretical one-dimensional model for the charging process in stratified thermal storage tanks is established presuming that the fluid ensuing from the tank inlet creates a perfectly mixed, layer above the thermocline. Both the generic and asymptotic closed-form solutions are obtained via the Laplace transformation. The asymptotic solution describes the nature of the charging pertaining to the case of no thermal diffusion, whereas the generic solution is of practical importance to understand the role of operating parameters on the stratification. The present model is validated through comparison with available experimental data, where they agree well with each other within a reasonable limit. An interpretation of the exact solution entails two important features associated with the charging process. The first is that an in-crease in the mixing depth $h_m$ causes a relatively slow temperature rise in the perfectly mixed region, but on the other hand it results in a faster decay of the overall temperature gradient across the thermocline. Next is the predominance of the mixing depth in the presence of the prefectly mixed region. In such a case the effect of the Peclet number is marginal and there-fore the thermal characteristics are solely dependent on the mixing depth paticularly for large $h_m$. The Peclet number affects significantly only for the case without mixing. Variation of the storage efficiency in response to the change in the mass flow rate agrees favorably with the published experimental results, which confirms the utility of the present study.

  • PDF