• Title/Summary/Keyword: fluid and flow

Search Result 7,252, Processing Time 0.034 seconds

Experiment Study on Mixing Efficiency of Material for Improving Reclamation Soil Quality in Dredging Soil Pipeline using CFD (준설토 배송관로 내에서의 개질재 혼합효율에 대한 CFD 해석)

  • Park, Byongjun;Kang, Byungyoon;Chung, Minchul;Shin, Jaeryul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1083-1096
    • /
    • 2015
  • This study utilised Computational Fluid Dynamics(CFD) for preliminary assessment of mixing efficiencies of 2-phase fluids in a pipe at which a slurry flow and an injected solidifier join, for the purposes of reducing trial-and-error-based instances of physical experiments and conducting the overall research in an economical way. Using OpenFOAM$^{(R)}$, we simulated behavior of 3-phase fluids under 18 different settings generated by changing diameters of a dredged soil transportation pipe, a quality improving material injection pipe and the confluence angle. While difference in mixing efficiencies amongst the instances was insignificant, discernible boundary layers amongst the materials were observed in all of the instances. In order to break the boundary layers, we designed a substructure inside a pipe and found out that it could remarkably improve mixing efficiencies particularly for short distance applications.

Influence of the Francis Turbine location under vortex rope excitation on the Hydraulic System Stability

  • Alligne, S.;Nicolet, C.;Allenbach, P.;Kawkabani, B.;Simond, J.J.;Avellan, F.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.286-294
    • /
    • 2009
  • Hydroelectric power plants are known for their ability to cover variations of the consumption in electrical power networks. In order to follow this changing demand, hydraulic machines are subject to off-design operation. In that case, the swirling flow leaving the runner of a Francis turbine may act under given conditions as an excitation source for the whole hydraulic system. In high load operating conditions, vortex rope behaves as an internal energy source which leads to the self excitation of the system. The aim of this paper is to identify the influence of the full load excitation source location with respect to the eigenmodes shapes on the system stability. For this, a new eigenanalysis tool, based on eigenvalues and eigenvectors computation of the nonlinear set of differential equations in SIMSEN, has been developed. First the modal analysis method and linearization of the set of the nonlinear differential equations are fully described. Then, nonlinear hydro-acoustic models of hydraulic components based on electrical equivalent schemes are presented and linearized. Finally, a hydro-acoustic SIMSEN model of a simple hydraulic power plant, is used to apply the modal analysis and to show the influence of the turbine location on system stability. Through this case study, it brings out that modeling of the pipe viscoelastic damping is decisive to find out stability limits and unstable eigenfrequencies.

Development of Wall Slip Models for Rarefied Gas and MEMS Thermal Fluid Flows (희박기체 및 MEMS 열유동장 해석을 위한 벽면 슬립모델 개발)

  • Myong, Rho-Shin;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.90-97
    • /
    • 2002
  • Wall slip models are essential to the study of nonequilibrium gas transport in rarefied and microscale condition that can be found in gas flows associated with aerospace vehicle, propulsion system, and MEMS. The Maxwell slip model has been used for this type of problem, but it has difficulty in defining the so-called accommodation coefficient and has not been very effective in numerical implementation. In the present study, on the basis of Langmuir's theory of the adsorption of gases on metals, a physical slip model is developed. The concept of the accommodation coefficient and the difference of gas particles are clearly explained in the new model. It turned out that the Langmuir model recovers the Maxwell model in the first-order approximation. The new models are also applied to various situations including internal flow in a microchannel. Issues of validation of models are treated by comparing analytic results with experiment.

Analysis on the Observation Environment of Surface Wind Using GIS data (GIS 자료를 활용한 지상 바람 관측환경 분석)

  • Kwon, A-Rum;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.65-75
    • /
    • 2015
  • In this study, the observation environment of surface wind at an automatic weather station (AWS 288) located at Naei-dong, Mirang-si was analyzed using a computational fluid dynamics (CFD) model and geographic information system (GIS). The 16 cases with different inflow directions were considered before and after construction of an apartment complex around the AWS 288. For three inflow directions (south-south-westerly, south-south-easterly, and north-north-westerly), flow characteristics around the AWS 288 were investigated in detail, focusing on the changes in wind speed and direction at the AWS location. There was marked difference in wind speed between before and after construction of the apartment complex in the south-south-westerly case. In the south-south-easterly and north-north-westerly cases which were frequently observed at the AWS 288, the construction of the apartment complex had no marked influence on the observation of surface wind.

Prediction of Oil Outflows from Damaged Ships using CFD Simulations (손상 선박의 기름 유출량 예측을 위한 CFD 시뮬레이션)

  • Moon, Yo-Seop;Park, Il-Ryong;Kim, Je-In;Suh, Seong-Bu;Lee, Seung-Guk;Choi, Hyuek-Jin;Hong, Sa-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.394-405
    • /
    • 2022
  • This paper presents the numerical estimation results of oil outflows from damaged single-hull and double-hull ships by using computational fluid dynamics (CFD) simulations. A CFD method for multi-phase flow analysis was used, and the effects of numerical parameters on oil flows was investigated. Numerical simulations were conducted to predict the changes in oil outflows under various damage conditions owing to grounding or collision accidents and verified through available experimental results. The present numerical results showed a good agreement with the experimental results according to the geometrical characteristics of single and double hulls. In particular, the oil outflows from double hulls accompanying complex interactions between water and oil were reasonably predicted a shown in the experiment. This study established a reliable CFD technique necessary for estimating the oil outflows of damaged ships.

Numerical Simulation on Drag and Lift Coefficient around Ship Rudder using Computational Fluid Dynamics (전산 유체 역학을 이용한 선박 방향타 주변의 항력 및 양력 계수에 대한 수치 시뮬레이션)

  • Bon-Guk Koo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.97-102
    • /
    • 2023
  • Numerical simulations have been performed to investigate the hydrodynamic characteristics of the rudder since they play an important role in naval architecture fields. Although some values such as hydrodynamics forces can be measured easily in the towing tanks, it is difficult to obtain the detailed information of the flow fields such as pressure distribution, velocity distribution, vortex generation from experiments. In the present study, the effects of hydrodynamic coefficients and Reynolds number acting on the rudder were studied by using Computational Fluid Dynamics(CFD). Ansys fluent, one of commercial CFD solvers, solves the Navier-Stokes equations and the k-epsilon turbulence model is selected for the viscous model to solve RANS equations. At first, drag coefficients and lift coefficient for different angle of attack are obtained by using a CFD commercial code for KCS rudder. Secondly, the 2-D lift coefficients and drag coefficients are compared with 3-D coefficients at the same conditions. Thirdly, the effects of Reynolds number on the hydrodynamic forces are investigated.

Evaluation of the applicability of a buoyancy-modified turbulence model for free surface flow analysis based on the VOF method (VOF 기반 자유수면 흐름 해석을 위한 부력 수정 난류 모형의 적용성 평가)

  • Lee, Du Hana
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.493-507
    • /
    • 2024
  • RANS-based CFD analysis is widely applied in various engineering fields, including practical hydraulic engineering, due to its high computational efficiency. However, problems of non-physical behavior in the analysis of two phase flow, such as free surfaces, have long been raised. The two-equation turbulence models used in general RANS-based analysis were developed for single phase flow and simulate unrealistically high turbulence energy at the interface where there are abrupt changes in fluid density. To solve this issue, one of the methods recently developed is the buoyancy-modified turbulence model, which has been partially validated in coastal engineering, but has not been applied to open channel flows. In this study, the applicability of the buoyancy-modified turbulence model is evaluated using the VOF method in the open-source program OpenFoam. The results of the uniform flow showed that both the buoyancy-modified k-𝜖 model and the buoyancy-modified k-ω SST model effectively simulated the reduction of turbulence energy near the free surface. Specifically, the buoyancy-modified k-ω SST model accurately simulated the vertical velocity distribution. Additionally, the model is applied to dam-break flows to examine cases with significant surface variation and cavity formation. The simulation results show that the buoyancy-modified turbulence models produce varying results depending on the VOF method and shows non-physical behavior different from experimental results. While the buoyancy-modified turbulence model is applicable in cases with stable surface shapes, it still has limitations in general application when there are rapid changes in the free surface. It is concluded that appropriate adjustments to the turbulence model are necessary for flows with rapid surface changes or cavity formation.

Formation Processes of Fault Gouges and their K-Ar Ages along the Dongnae Fault (동래단층 지역 단층비지의 생성과정과 K-Ar 연령)

  • 장태우;추창오
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.175-188
    • /
    • 1998
  • This paper describes the internal structures and K-Ar ages of fault gouges collected from the Dongnae fault zone. This fault zone is internally zoned and occurs in the multiple fault cores. A fault core consists of thin gouge and narrow cataclastic zones that are bounded by a much thicker damage zone. Intensity of deformation and alteration increases from damage zone through cataclastic zone to gouge zone. It is thought that cataclasis of brittle deformation was the dominant strain-accomodation mechanism in the early stage of deformation to form the gouge zone and that crushed materials in the regions of maximum localization of fault slip subsequently moved by cataclastic flow. Deformation mechanism drastically changed from brittle processes to fluid-assisted flow along the gouge zone as the high porosity and permeability of pulverzied materials during faulting facilitated the influx of the hydrothermal fluids. Subsequently, the fluids reacted with gouge materials to form clay minerals. Fracturing and alteration could have repeatedly taken place in the gouge zone by elevated fluid pressures generated from the reduction of pore volume due to the formation of clay minerals and precipitation of other materials. XRD analysis revealed that the most common clay minerals of the gouge zones are illite and smectite with minor zeolite and kaolinite. Most of illites are composed of 1Md polytype, indicating the products of hydrothermal alteration. The major activities of the Dongnae fault can be divided into two periods based upon K-Ar age data of the fault gouges : 51.4∼57.5Ma and 40.3∼43.6Ma. Judging from the enviromental condition of clay mineral formation, it is inferred that the hydrothermal alteration of older period occured at higher temperature than that of younger period.

  • PDF

Superiority of Modifiled University of Wiscinsin Solution in the Prolonged Preservation of Isolated Rat Heart (적출 쥐 심장의 장시간 보존에 있어서 University of Wisconsin 수정 용액의 우수성)

  • Lee, Jae-Seong;Kim, Song-Myeong;Kim, Gyu-Tae
    • Journal of Chest Surgery
    • /
    • v.26 no.6
    • /
    • pp.427-440
    • /
    • 1993
  • The paucity of donor hearts for transplantation can be remedied by distant heart procurement. Prolonging donor heart preservation is essential for successful clinical cardiac transplantation. Thirty-two isolated rat hearts were perfused with Krebs-Henseleit buffer solution for 15 minutes, arrested and preserved at 4 oC for 4 hours, and then reperfused for 25 minutes. The following three groups were prepared and hemodynamic changes, creatine kinase-MB isoenzyme levels and ultrastructural changes of the myocardium were analysed before and after cardiac arrest. ; Group I : the heart was arrested with the cardioplegic solution [Plegisol, potassium : 16 mM, sodium : 120 mM] and then stored in a solution with ionic compositions of the extracellular fluid [Hartman, potassium : 4 mM, sodium : 130 mM] ; Group II : the heart was arrested with the cardioplegic solution and stored in a solution with ionic compositions of the intracellular fluid [Modified Euro-Collins, potassium : 108 mM, sodium : 10 mM] ; Group III : the heart was arrested with the cardioplegic solution containing adenosine 20 uM, and then stored in a solution with ionic compositions of the intracellular fluid [Modified University of Wisconsin solution, potassium : 119 mM, sodium: 23 mM]. Left ventricular developed pressure at 20 minutes of the reperfusion was significantly higher in group III [64.3 $\pm$ 3.12 mmHg, p<0.01] and group II [58.3 $\pm$ 1.55 mmHg, p<0.05] as compared with group I [51.4$\pm$ 2.78 mmHg]. The time to induce cardiac arrest after infusion of cardioplegic solution with adenosine 20 uM [5.3 $\pm$ 0.30 second, p<0.005] was significantly shorter than without adenosine [10.6$\pm$ 0.55 second]. Coronary flow at 20 minutes of the reperfusion was augmented significantly in group III [9.6$\pm$ 0.50 ml/min, p<0.05, p<0.05] as compared with group I [8.0 $\pm$ 0.41 ml/min] and group II [8.1$\pm$ 0.51 ml/min]. Percentage recovery of left ventricular developed pressure at 20 minutes of the reperfusion was significantly higher in group III [94.6$\pm$ 2.51 %, p<0.005] as compared with group II and in group II [83.1 $\pm$ 1.22 %, p<0.005] as compared with group I [69.9 $\pm$ 1.73 %], and also percentage recovery of coronary flow at 20 minutes of the reperfusion was significantly higher in group III [82.3 $\pm$ 3.86 %, p<0.05] as compared with group II [71.4 $\pm$ 3.46 %] but there was no significant difference between group I and group II. Measured level of creatine kinase-MB isoenzyme at 15 minutes of the reperfusion was significantly lower in group III [1.23 $\pm$ 0.16 ng/ml, p<0.025] and group II [1.42$\pm$ 0.10 ng/ml, p<0.05] as compared with group I [1.79 0.14 ng/ml]. In the semiquantitative evaluation of the ultrastructural changes of the myocardium, mitochondrial score was lower in group III [0.7 $\pm$ 0.21] than in group I [3.1$\pm$ 0.28] and group II [1.7 $\pm$ 0.19], and also the other structural score was lower in group III [2.7$\pm$ 0.99] than in group I [7.9 $\pm$ 0.89] and group II [5.0 $\pm$ 1.22]. In conclusion, the solution with ionic compositions of the intracellular fluid is appropriate for prolonged cardiac preservation, and it appears to be better preserving method for distant procurement when the donor heart is rapidly arrested with cardioplegic solution containing adenosine 20 uM, and then stored with Modified University of Wisconsin solution.

  • PDF

Analysis of Relative Contributions of Tonal Noise Sources in Volute Tongue Region of a Centrifugal Fan (원심팬 볼루트 영역내 순음 소음원의 상대적 기여도 분석)

  • Heo, Seung;Kim, Daehwan;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • Interaction between the unsteady flow emitted from the blade of the centrifugal fan and the volute tongue region of fan duct is known as the main noise source of the centrifugal fan. In this paper, the relative contributions of the volute tongue region of the centrifugal fan is analyzed to utilize as the foundation data of low noise design. The internal hybrid CAA (Computational Aero-Acoustics) method is used to predict noise radiated from the main noise source. This method is the noise prediction technique using CFD (Computational Fluid Dynamics), Acoustic analogy, and BEM(Boundary Element Method). The relative contributions of the centrifugal fan volute tongue region using the hybrid CAA method show that the region between the cut-off and the scroll has high contribution than the region between the cut-off and the outlet and the hub region of blade has high contribution than the shroud region of blade. These results is utilized as the important data for the development of low noise centrifugal fan.