• Title/Summary/Keyword: fluid and flow

Search Result 7,252, Processing Time 0.035 seconds

Comparison of Experimental and Numerical Analysis for Durability Design Criteria in Ceramic Catalyst Substrate (세라믹 촉매 담체의 내구 설계 기준에 대한 실험 및 수치해석의 비교)

  • Beak, Seok-Heum;Cho, Seok-Swoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.58-66
    • /
    • 2010
  • This study examines thermal safety on three-way catalyst that dominates 70 % among whole exhaust gas purification device in 2003. Three-way catalyst durability in the Korea requires 5 years/80,000 km in 1988 but require 10 years/120,000 km after 2002. Three-way catalyst durability in the USA requires 7 years/120,000 km but require 10 years/160,000 km after 2004. Three-way catalyst maintains high temperature in interior domain but maintains low temperature on outside surface. Therefore this device shows tensile stress on outside surface. Temperature distribution of three-way catalyst was acquired by thermal flow analysis for predicted thermal flow parameter. Thermal stress analysis for three-way catalysis was performed based on this temperature distribution. Thermal safety of three-way catalyst was estimated by power law dynamic fatigue life estimation and strength reduction methods for thermal stress.

Identification of hydrogen flammability in steam generator compartment of OPR1000 using MELCOR and CFX codes

  • Jeon, Joongoo;Kim, Yeon Soo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1939-1950
    • /
    • 2019
  • The MELCOR code useful for a plant-specific hydrogen risk analysis has inevitable limitations in prediction of a turbulent flow of a hydrogen mixture. To investigate the accuracy of the hydrogen risk analysis by the MELCOR code, results for the turbulent gas behavior at pipe rupture accident were compared with CFX results which were verified by the American National Standard Institute (ANSI) model. The postulated accident scenario was selected to be surge line failure induced by station blackout of an Optimized Power Reactor 1000 MWe (OPR1000). When the surge line failure occurred, the flow out of the surgeline was strongly turbulent, from which the MELCOR code predicted that a substantial amount of hydrogen could be released. Nevertheless, the results indicated nonflammable mixtures owing to the high steam concentration released before the failure. On the other hand, the CFX code solving the three-dimensional fluid dynamics by incorporating the turbulence closure model predicted that the flammable area continuously existed at the jet interface even in the rising hydrogen mixtures. In conclusion, this study confirmed that the MELCOR code, which has limitations in turbulence analysis, could underestimate the existence of local combustible gas at pipe rupture accident. This clear comparison between two codes can contribute to establishing a guideline for computational hydrogen risk analysis.

Study on Film Boiling Heat Transfer of Spray Cooling in Air-Water Full Cone Spray System (물-공기 원추형 분무시스템에 있어서 분무냉각 막비등 열전달에 관한 연구)

  • Kim, Yeung-Chan;Yun, Seung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1236-1242
    • /
    • 2006
  • The local heat flux of spray cooling in the film boiling region were experimentally investigated for the spray region of $D_{max}$ = $0.005{\sim}0.03m^3/(m^2s)$. A twin-fluid full cone spray nozzle was employed for the experiment and the distributions of droplet flow rates were obtained for air-water full cone sprays. A stainless steel block was cooled down from initial temperature of about $800^{\circ}C$ by full cone spray. In the region near the stagnation point, it was found that the experimental data are in good agreement with the results predicted from the correlations between the local heat transfer and the local droplet flow rate proposed in the previous report. However, it was found that the experimental data of $D_r$ > $0.01m^3/(m^2s)$ are a little smaller than the results predicted from the correlations.

Grid Refinement Model in Lattice Boltzmann Method for Stream Function-Vorticity Formulations (유동함수-와도 관계를 이용한 격자볼츠만 방법에서의 격자 세밀화 모델)

  • Shin, Myung Seob
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.415-423
    • /
    • 2015
  • In this study, we present a grid refinement model in the lattice Boltzmann method (LBM) for two-dimensional incompressible fluid flow. That is, the model combines the desirable features of the lattice Boltzmann method and stream function-vorticity formulations. In order to obtain an accurate result, very fine grid (or lattice) is required near the solid boundary. Therefore, the grid refinement model is used in the lattice Boltzmann method for stream function-vorticity formulation. This approach is more efficient in that it can obtain the same accurate solution as that in single-block approach even if few lattices are used for computation. In order to validate the grid refinement approach for the stream function-vorticity formulation, the numerical simulations of lid-driven cavity flows were performed and good results were obtained.

Fluid Network Analysis for the Fuel-Supply Systems of Gaseous-Injection-Type LPG Engines (가스분사 방식 LPG 엔진의 연료공급시스템 관로 유동해석)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1019-1024
    • /
    • 2011
  • The gaseous fuel injection(GFI) type of LPG fuel-supply system is more advantageous than liquefied fuel injection(LFI) from the viewpoint of durability and cost reduction. However, compared with LFI types of LPG fuel-supply systems, in the GFI systems it is difficult to achieve precision fuel metering because of the compressible characteristic of the gaseous fuel. In this study, a Helmholtz resonator is proposed as an appropriate system for precision fuel metering in GFI systems, and the effects of the Helmholtz resonator on the fuel metering are simulated by the commercial flow-network-analysis package Flowmaster.

Development of Micro-chip Removal Equipment Using Bubble (버블을 이용한 미세칩 제거장치의 개발)

  • Choi, Sung-Yun;Kwon, Dae-Gyu;Lee, Sea-Han;Park, Tae-hyun;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.88-94
    • /
    • 2021
  • Machining operations require the removal of chips to keep the water-soluble cutting oil clean and fresh throughout the operation time. Water-soluble cutting oil for metal processing is diluted using a 3-8% solution in water which is generally replaced every three to six months. This study aims to develop multiple purification devices to efficiently remove fine contaminating particles from water-soluble cutting oil. The 2D concept designs were created using AutoCAD. The designs were drawn using the 3D modelling feature of CATIA. Flow analysis was performed in a bubble purifier using Ansys computational fluid dynamics (CFD). This analysis has aided in improving the design and structure of the device to create the final prototype. Experiments were conducted to check the prototype's performance. Comparisons of the effects of each process variable on the experiment was carried out using ANOVA.

Analysis of Endothermic Regenerative Cooling Technologies by Using Hydrocarbon Aviation Fuels (탄화수소 항공유를 이용한 흡열재생냉각 기술분석)

  • Lee, Hyung Ju
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.113-126
    • /
    • 2021
  • In order to develop active cooling systems for a hypersonic cruise vehicle, a series of studies need to be preceded on regenerative cooling technologies by using endothermic reaction of liquid hydrocarbon aviation fuels. Among them, it is essential to scrutinize fluid flow/heat transfer/endothermic pyrolysis characteristics of supercritical hydrocarbons in a micro-channel, as well as to acquire thermophysical properties of hydrocarbon fuels in a wide range of temperature and pressure conditions. This study, therefore, reviewed those technologies and analyzed major findings in related research areas which have been carried out worldwide for the development of efficient operational regenerative cooling systems of a hypersonic flight vehicle.

Numerical Study on Cavitation Flow and Noise in the Flow Around a Clark-Y Hydrofoil (Clark-Y 수중익형 주변 공동 현상에 의한 유동장과 소음 예측에 대한 수치적 연구)

  • Ku, Garam;Cheong, Cheolung;Kim, Sanghyeon;Ha, Cong-Tu;Park, Warn-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • Because the cavitation flow driven by an underwater propeller corrodes the materials around it and generates a high level of noise, it has become an important topic in engineering research. In this study, computational fluid dynamics techniques are applied to simulate cavitation flow, and the noise in the flow is predicted by applying the acoustic analogy to the predicted flow. The predicted results are compared with measurement results and other predictions in terms of surface pressure distribution and the temporal variation in liquid volume fraction. The predicted results are found to be in good agreement with the measured results. The source of the noise attributed to the time rate of change in the liquid volume fraction around the hydrofoil is modeled as a monopole source, and the source of the noise due to unsteady pressure perturbations on the hydrofoil surface is modeled as a dipole source. Then the predicted noise results are analyzed in terms of directivity and SPL spectrum. The noise caused by unsteady pressure perturbations was dominant in the entire frequency range considered in the study.

Technical Consideration for Production Data Analysis with Transient Flow Data on Shale Gas Well (셰일가스정 천이유동 생산자료분석의 기술적 고려사항)

  • Han, Dong-kwon;Kwon, Sun-il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2016
  • This paper presents development of an appropriate procedure and flow chart to analyze shale gas production data obtained from a multi-fractured horizontal well according to flow characteristics in order to calculate an estimated ultimate recovery. Also, the technical considerations were proposed when a rate transient analysis was performed with field production data occurred to only $1^{st}$ transient flow. If production data show the $1^{st}$ transient flow from log-log and square root time plot analysis, production forecasting must be performed by applying different method as before and after of the end of $1^{st}$ linear flow. It is estimated by an area of stimulated reservoir volume which can be calculated from analysis results of micro-seismic data. If there are no bottomhole pressure data or micro-seismic data, an empirical decline curve method can be used to forecast production performance. If production period is relatively short, an accuracy of production data analysis could be improved by analyzing except the early production data, if it is necessary, after evaluating appropriation with near well data. Also, because over- or under-estimation for stimulated reservoir volume could take place according to analysis method or analyzer's own mind, it is necessary to recalculate it with fracture modeling, reservoir simulation and rate transient analysis, if it is necessary, after adequacy evaluation for fracture stage, injection volume of fracture fluid and productivity of producers.

Application of CFD Methods to Improve Performance of Denitrification Facility (탈질 설비의 성능 개선을 위한 CFD 기법 적용에 관한 연구)

  • Min-Kyu Kim;Hee-Taeg Chung
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.305-312
    • /
    • 2023
  • Due to the strengthening of environmental requirements, aging denitrification facilities need to improve their performance. The present study aims to suggest the possibility of improving performance using computational analysis techniques. This involved modifying both the geometric design and the operating conditions, including the flow path shape of the equipment such as the inlet guide vane and the curved diffusing part, and the flow control of the ammonia injection nozzle. The conditions presented in this study were compared with existing operating conditions in terms of the flow uniformity, the NH3/NO molar ratio of the mixed gas flowing into the catalyst layer, and the total pressure drop of the facility. The flow field applied in the computational analysis ranged from the outlet of the economizer in the combustion furnace to the inlet of the air preheater, the full domain of the denitrification facility. The performances were derived by solving the flow fields using ANSYS-Fluent and the injection amount of ammonia was adjusted for each nozzle using Design Xplorer. Compared to the denitrification performances of the equipment currently in operation, the conditions proposed in this study showed an improvement in the flow uniformity and NH3/NO composition ratio by 45.1% and 8.7%, respectively, but the total pressure drop increased by 1.24%.