• Title/Summary/Keyword: fluid and flow

Search Result 7,252, Processing Time 0.034 seconds

An Optimization for Flow Control Butterfly Valve using Grey Relational Analysis (회색 관계 분석을 이용한 유량 제어용 버터플라이밸브 형상 최적화)

  • Lee, Sang Beom;Lee, Dong Myung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.6
    • /
    • pp.359-366
    • /
    • 2014
  • This paper considered optimization method of appending a shape on a disc in an attempt to improve core functions, which are inherent in flow characteristics. The paper also verifies the optimization method of appendage shape with a Class 150 200A Butterfly valve. Then the design of experiment (DOE) with an orthogonal array is performed to analyze the effect of form parameters by grey relational analysis and analysis of mean (ANOM). And this study sets flow coefficient as an object functions for optimization, and the conventional disc model and the optimal appendage shape on disc model are compared by computational fluid analysis. The paper concludes that an optimal appendage shape on disc model achieves wider usability by a wider operating range.

Computational analysis of pollutant dispersion in urban street canyons with tree planting influenced by building roof shapes

  • Bouarbi, Lakhdar;Abed, Bouabdellah;Bouzit, Mohamed
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.505-521
    • /
    • 2016
  • The objective of this study is to investigate numerically the effect of building roof shaps on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, $P_{vol}=96%$. A three-dimensional computational fluid dynamics (CFD) model is used to evaluate air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier-Stokes (RANS) equations and the Explicit Algebraic Reynolds Stress Models (EARSM) based on k-${\varepsilon}$ turbulence model to close the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated by the wind tunnel experiment results. Having established this, the wind flow and pollutant dispersion in urban street canyons (with six roof shapes buildings) are simulated. The numerical simulation results agree reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated; this complexity is increased with the presence of trees and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped.

Effect of internal angles between limbs of cross plan shaped tall building under wind load

  • Kumar, Debasish;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.95-118
    • /
    • 2017
  • The present study revealed comparison the pressure distribution on the surfaces of regular cross plan shaped building with angular cross plan shaped building which is being transformed from basic cross plan shaped building through the variation of internal angles between limbs by $15^{\circ}$ for various wind incidence angle from $0^{\circ}$ to $180^{\circ}$ at an interval of $30^{\circ}$. In order to maintain the area same the limbs sizes are slightly increased accordingly. Numerical analysis has been carried out to generate similar nature of flow condition as per IS: 875 (Part -III):1987 (a mean wind velocity of 10 m/s) by using computational fluid dynamics (CFD) with help of ANSYS CFX ($k-{\varepsilon}$ model). The variation of mean pressure coefficients, pressure distribution over the surface, flow pattern and force coefficient are evaluated for each cases and represented graphically to understand extent of nonconformities due to such angular modifications in plan. Finally regular cross shaped building results are compared with wind tunnel results obtained from similar '+' shaped building study with similar flow condition. Reduction in along wind force coefficients for angular crossed shaped building, observed for various skew angles leads to develop lesser along wind force on building compared to regular crossed shaped building and square plan shaped building. Interference effect within the internal faces are observed in particular faces of building for both cases, considerably. Significant deviation is noticed in wind induced responses for angular cross building compared to regular cross shaped building for different direction wind flow.

Numerical Study of Hydrogen/Air Combustion in Combustion Chamber of Ultra Micro Gas Turbine by Change of Flow Rate and Equivalence Ratio (공급 유량 및 당량비 변화에 따른 초소형 가스터빈 연소실 내 수소/공기 연소의 수치해석 연구)

  • Kwon, Kilsung;Hwang, Yu Hyeon;Kang, Ho;Kim, Daejoong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.103-109
    • /
    • 2013
  • In this study, we performed a numerical study of hydrogen/air combustion in the combustion chamber of an ultra micro gas turbine. The supply flow rate and equivalence ratio are used as variables, and the commercial computational fluid dynamic program (STAR-CCM) is used for the numerical study of the combustion. The flow rate significantly affects the flame position, flame temperature, and pressure ratio between the inlet and the outlet. The flame position is close to the outlet in the combustion chamber, and the flame temperature and pressure ratio monotonously increases with the supply flow rate. The change in the equivalence ratio does not affect the flame position. The maximum flame temperature occurs under stoichiometric conditions.

ANALYSIS OF EIGEN VALUES FOR EFFECTIVE CHOICE OF SNAPSHOT DATA IN PROPER ORTHOGONAL DECOMPOSITION (적합직교분해 기법에서의 효율적인 스냅샷 선정을 위한 고유값 분석)

  • Kang, H.M.;Jun, S.O.;Yee, K.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.59-66
    • /
    • 2017
  • The guideline of selecting the number of snapshot dataset, $N_s$ in proper orthogonal decomposition(POD) was presented via the analysis of Eigen values based on the singular value decomposition(SVD). In POD, snapshot datasets from the solutions of Euler or Navier-Stokes equations are utilized to SVD and a reduced order model(ROM) is constructed as the combination of Eigen vectors. The ROM is subsequently applied to reconstruct the flowfield data with new set of flow conditions, thereby enhancing the computational efficiency. The overall computational efficiency and accuracy of POD is dependent on the number of snapshot dataset; however, there is no reliable guideline of determining $N_s$. In order to resolve this problem, the order of maximum to minimum Eigen value ratio, O(R) from SVD was analyzed and presented for the decision of $N_s$; in case of steady flow, $N_s$ should be determined to make O(R) be $10^9$. For unsteady flow, $N_s$ should be increased to make O(R) be $10^{11\sim12}$. This strategy of selecting the snapshot dataset was applied to two dimensional NACA0012 airfoil and vortex flow problems including steady and unsteady cases and the numerical accuracies according to $N_s$ and O(R) were discussed.

A Study on the Pressure Increment of Fuel Pump for GDI Engines Considering Leakage Flows (누설특성을 고려한 GDI 엔진용 연료펌프의 고압생성 증진에 관한 연구)

  • Na, Byung-Chul;Kim, Byoung-Soo;Choi, Suk-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.785-791
    • /
    • 2000
  • GDI (Gasoline Direct Injection) engines are considered as one of the candidates for next generation engines of passenger cars, which reduce exhaust emissions and fuel consumption. In GOI engines, a high-pressure gasoline supply system is required to directly inject the fuel to combustion chambers. Because of low lubricity of gasoline fuel, the clearance between a plunger and a barrel in GDI fuel pumps is too wide to achieve smooth hydrodynamic lubrication. Thus, it is difficult to generate high-pressure condition in GDI fuel pump since large amount of leakage flow occurs between the plunger and the barrel In this study, an optimum plunger design is presented to minimize leakage in the aspect of flow control. This paper analyzes leakage flow characteristics in the clearance to improve pumping performance of GDI fuel pumps. Effects of groove in the plunger are studied according to variations of depth and width. Evaluations of pumping performance are determined by the amount of pressure drop in the leakage path assuming a constant leakage flows. Both of turbulence and incompressible models are introduced in CFD (Computational Fluid Dynamics) analysis. Design parameters have been introduced to minimize leakage in limited space, and a methodological study on geometrical optimization has been conducted. As results of CFD analysis in various geometrical cases, optimum groove depths have been found to generate maximum sealing effects on gasoline fuel between the plunger and the barrel. This procedure offers a methodological way of an enhancement of plunger design for high-pressure GDI fuel pumps.

The Visualization of the Flowfield around Three Circular Cylinders in the Tandem Arrangement by the PIV (PIV에 의한 직렬배열 상태에 놓인 3원주 주위의 유동장 가시화)

  • Ro, Ki-Deok;Jang, Dong-Hyu;Bae, Hung-Sub;Kim, Won-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.264-270
    • /
    • 2011
  • The Characteristics of the flowfield around three circular cylinders in tandem arrangement was investigated by PIV. Strouhal numbers, vorticity, velocity vectors and velocity profiles were observed at centre-to-centre space ratios of P/D=1.25~3.75, and Reynolds number of Re=$3.0{\times}10^3{\sim}5.0{\times}10^3$. As the results the Strouhal numbers measured in the rear region of 3rd the cylinder were distinguished three kind of regions with the space ratios and The flow pattern in the wake of each cylinder was different according to these regions. The time averaged flow at region of each cylinder was almost stagnated and the size of the stagnated region was small in order of 1st, 2nd and 3rd cylinder. The direction of vortex at the front and rear region of 2nd cylinder was opposed each other with the small difference(${\alpha}= {\pm}5^{\circ}$) of the attack angle ${\alpha}$.

Pressure Drop and Vibration Characteristics of the Capsule with the Modification of Bottom Structures (캡슐 하단부 구조변경에 따른 압력강하 및 진동특성)

  • Choi, M.H.;Choo, K.N.;Cho, M.S.;Kim, B.G.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1370-1377
    • /
    • 2005
  • The bottom structure of an instrumented capsule is a part which is joined at the receptacle of the flow tube in the reactor in-core. A geometrical change of the bottom structure has an effect on the pressure drop and the vibration of the capsule. The out-pile test to evaluate the structural integrity of the material capsule called 04M-17U was performed by using a single channel and a half core test loop. From the pressure drop test, the optimized diameter of the cone shape's bottom structure which satisfies HANARO's flow requirement (19.6 kg/s) is 71 mm. The maximum displacement of the capsule measured at the half core test loop is lower than 1.0 mm. From the analysis results, it is found that the test hole will not be interfered with near the flow tubes because its displacement due to the cooling water is very small at 0.072 mm. The fundamental frequency of the capsule under water is 9.64 Hz. It is expected that the resonance between the capsule and the fluid flow due to the cooling water in HANARO's in-core will not occur. Also, the new bottom structure of a solid cone shape with 71 mm in diameter will be applicable to the material and special capsules in the future.

Effects of Nonequilibrium Condensation on an Oblique Shock Wave in a Supersonic Nozzle of Constant Expansion Rate (팽창률이 일정한 초음속 노즐흐름에 있어서 비평형 응축이 경사충격파에 미치는 영향)

  • 강창수;권순범;김병지;홍종우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1311-1319
    • /
    • 1990
  • For the purpose of preventing the flow undulation in the cascade of steam turbine, the blades are made into a constant expansion rate in static pressure. And the flow in those cascades is transonic or supersonic in the range of 0.7-2.0 in Mach number. As a consequence, an oblique shock wave, known as inner or outer edge shock wave, arises in the flow of cascades. Especially when the steam in cascades is in a state of high wetness, nonequilibrium condensation and condensation shock wave occur, and they give rise to an interference with oblique shock wave. In the present study the case of expansion of moist air through a supersonic nozzle of constant expansion rate, which behaves similar to that of wet steam, was adopted. The effect of nonequilibrium condensation on the oblique shock wave generated by placing the wedge into the supersonic part of the nozzle was investigated. Furthermore, the relationship between nonequilibrium condensation zone and incident point of the oblique shock wave, oblique shock wave angle, the variations of angles of incident and reflected shock waves due to the variation of initial stagnation supersaturation and the relationship between the height of Mach stem and initial stagnation supersaturation are discussed.

Numerical Simulation of the Fully Developed Flow and Heat Transfer of a Plate Heat Exchanger Taking into Account Variation in the Corrugation Height (주름높이의 변화를 고려한 판형열교환기의 완전발달유동 및 열전달 수치해석)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Numerical analysis has been carried out to investigate the fully developed flow and heat transfer characteristics of a plate heat exchanger. Multi-cell models with an inlet part and outlet part are used to perform the numerical simulation. The plate heat exchanger is characterized by a chevron angle of $20^{\circ}$ and a P/H ratio of 2.0~4.0. The working fluid is water and the Reynolds numbers range from 300 to 1,500. The correlation is given in the form of $f=CRe^m$ for the friction factor and $j=CRe^m$ for the Colburn factor. It is found that the fully developed flow starts from the third cell and the Nusselt number increases with decreasing P/H ratios.