• Title/Summary/Keyword: fluid and flow

Search Result 7,252, Processing Time 0.037 seconds

Performance Test of Turbopump Assembly for 75 Ton Liquid Rocket Engine Using Model Fluid (75톤급 액체로켓엔진용 터보펌프 조립체의 상사매질 성능시험)

  • Hong, Soon-Sam;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.27-32
    • /
    • 2010
  • Performance test of a full-scale turbopump assembly for a 75 ton class liquid rocket engine was carried out at full speed. Model fluid was used as a working medium: liquid nitrogen for the oxidizer pump, water for the fuel pump, and hot air for the turbine. The turbopump was operated stably, satisfying the performance requirements. Head coefficient and flow coefficient of the pumps remained constant at the speed-increasing period. In terms of performance characteristics of pumps and turbine, the results from the turbopump assembly test showed a good agreement with those from the turbopump component tests.

  • PDF

Modeling of Space Shuttle Main Engine heat exchanger using Volume-Junction Method (Volume-Junction Method를 이용한 우주왕복선 액체로켓엔진 열교환기 모델링)

  • Cha, Jihyoung;Ko, Sangho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.213-217
    • /
    • 2017
  • Since more than 30% of the liquid rocket engine failures occur during the start-up process, and the Space Shuttle Main Engine (SSME) is especially sensitive to small changes in propellant conditions, a 2% error in the valve position or a 0.1sec timing error could lead to significant damage of the engine, simulation modeling of start-up process is important. However, there are many difficulties associated with engine start-up process caused by nonlinear mass flow and heat transfer characteristics associated with filling an unconditioned engine system with cryogenic propellants. In this paper, we modelled a SSME simulation model using partially Computational Fluid Dynamics (CFD) method to solve these problems and checked the performance by comparing with the performance of the simulation model using the lumped method under the state of normal condition.

  • PDF

Preliminary Study on Factor Technology of Selective Catalytic Reduction System in Marine Diesel Engine (선박용 디젤엔진 SCR 시스템 요소 기술에 관한 기초 연구)

  • Park, Yoon-Yong;Song, Ha-Cheol;Ahn, Gi-Ju;Shim, Chun-Sik
    • Journal of Navigation and Port Research
    • /
    • v.40 no.4
    • /
    • pp.173-181
    • /
    • 2016
  • From 2016, controls on reduction of NOx and SOx emissions from the vessels that are operated in the emission control area were tightened. The selectivity catalytic reduction system of the denitrification equipment which NOx among the above controlled materials is very effective and used commercially very much. But it has the disadvantage that CSR is activated at high temperatures. Therefore, the SCR and SCR activation instrument that can react even at low temperatures by using micro-nano bubbles so that the above problems can be minimized were developed. And the computational fluid dynamics technique was used by ANSYS-CFX package to prepare the plan that improves the SCR system's efficiency. Simulation for the viscous flow analysis of the SCR system was executed by applying the Navier-Stokes equation to it as a governing equation. For the SCR system's shape, 3D modeling was done by using CATIA V5. SCR jet nozzle's position was checked by changing it to the intervals of 1/3, 1/2, and 2/3 from the inlet of the vent pipe to compare the SCR system's efficiency. And the number of nozzles was compared and analyzed by simulating 4, 6, and 8 holes to check an effect of the number on the SCR system's efficiency. The simulation result has found that the closer nozzles are to the inlet of the vent pipe and the more nozzles are, the more efficiency is improved.

Development and Verification of OGSFLAC Simulator for Hydromechanical Coupled Analysis: Single-phase Fluid Flow Analysis (수리-역학적 복합거동 해석을 위한 OGSFLAC 시뮬레이터 개발 및 검증: 단상 유체 거동 해석)

  • Park, Chan-Hee;Kim, Taehyun;Park, Eui-Seob;Jung, Yong-Bok;Bang, Eun-Seok
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.468-479
    • /
    • 2019
  • It is essential to comprehend coupled hydro-mechanical behavior to utilize subsurface for the recent demand for underground space usage. In this study, we developed a new simulator for numerical simulation as a tool for researching to consider the various domestic field and subsurface conditions. To develop the new module, we combined OpenGeoSys, one of the scientific software package that handles fluid mechanics (H), thermodynamics (T), and rock and soil mechanics (M) in the subsurface with FLAC3D, one of the commercial software for geotechnical engineering problems reinforced. In this simulator development, we design OpenGeoSys as a master and FLAC3D as a slave via a file-based sequential coupling. We have chosen Terzaghi's consolidation problem related to single-phase fluid flow at a saturated condition as a benchmark model to verify the proposed module. The comparative results between the analytical solution and numerical analysis showed a good agreement.

Centroidal Voronoi Tessellation-Based Reduced-Order Modeling of Navier-Stokes Equations

  • 이형천
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.1-1
    • /
    • 2003
  • In this talk, a reduced-order modeling methodology based on centroidal Voronoi tessellations (CVT's)is introduced. CVT's are special Voronoi tessellations for which the generators of the Voronoi diagram are also the centers of mass (means) of the corresponding Voronoi cells. The discrete data sets, CVT's are closely related to the h-means clustering techniques. Even with the use of good mesh generators, discretization schemes, and solution algorithms, the computational simulation of complex, turbulent, or chaotic systems still remains a formidable endeavor. For example, typical finite element codes may require many thousands of degrees of freedom for the accurate simulation of fluid flows. The situation is even worse for optimization problems for which multiple solutions of the complex state system are usually required or in feedback control problems for which real-time solutions of the complex state system are needed. There hava been many studies devoted to the development, testing, and use of reduced-order models for complex systems such as unsteady fluid flows. The types of reduced-ordered models that we study are those attempt to determine accurate approximate solutions of a complex system using very few degrees of freedom. To do so, such models have to use basis functions that are in some way intimately connected to the problem being approximated. Once a very low-dimensional reduced basis has been determined, one can employ it to solve the complex system by applying, e.g., a Galerkin method. In general, reduced bases are globally supported so that the discrete systems are dense; however, if the reduced basis is of very low dimension, one does not care about the lack of sparsity in the discrete system. A discussion of reduced-ordering modeling for complex systems such as fluid flows is given to provide a context for the application of reduced-order bases. Then, detailed descriptions of CVT-based reduced-order bases and how they can be constructed of complex systems are given. Subsequently, some concrete incompressible flow examples are used to illustrate the construction and use of CVT-based reduced-order bases. The CVT-based reduced-order modeling methodology is shown to be effective for these examples and is also shown to be inexpensive to apply compared to other reduced-order methods.

  • PDF

Effects of Drag Models on the Hydrodynamics and Heat Transfer in a Conical Fluidized Bed Combustor (원추형 유동층 연소기의 수력학적 특성 및 열전달에 항력 모델이 미치는 영향에 대한 연구)

  • Kang, Seung Mo;Abdelmotalib, Hamada;Ko, Dong Guk;Park, Woe-Chul;Im, Ik-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.861-869
    • /
    • 2015
  • In this study, wall to bed heat transfer and hydrodynamic characteristics in a conical fluidized bed combustor was investigated using computational fluid dynamics method. A two-fluid Eulerian-Eulerian model was used with applying the kinetic theory for granular flow(KTGF). The effects of the two drag models, Gidaspow and the Syamlal-O'Brien model, different inlet velocities($1.4U_{mf}{\sim}4U_{mf}$) and different particle sizes on the hydrodynamics and heat transfer were studied. The results showed that the hydrodynamic characteristics such as bed expansion ratio and pressure drop were not affected significantly by the drag models. But the heat transfer coefficient was different for the two drag models, especially at lower gas inlet velocities and small particle sizes.

Development of Chromatographic Downstream Processing for The Purification of Monoclonal Antibody from Ascites Fluid: Part 1. Tandem Use of Hydroxylapatite Chromatography and Gel Permeation Chromatography (복수로부터의 단세포군 항체의 정제를 위한 크로마토그래프 분리 정제 시스템의 개발 - 1. 히드록실 아파타이트 크로마토그라프와 겔 여과 크로마토그라프로 이루어진 2단계 연속공정 사용 -)

  • Ahn, I.S.;Park, C.Y.
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.1
    • /
    • pp.19-23
    • /
    • 1989
  • A sequential system composed of hydroxylapatite chromatography and gel permeation chromatography was developed to purify the IgM type monoclonal antibody against the colon cancer cell SC-1 from the ascitic fluid of mice injected with the murine hybridoma CH07E02. In the hydroxylapatite chromatographic step the band dilution could be reduced by controlling the gradient and flow rate of the eluent, the sodium phospate buffer, the optimum values for these variables being 5.82$\times$10$^{-3}$M/cm and 0.2$m\ell/\textrm{cm}^2$/min, respectively. A degree of purity better than 99.99% as judged from silverstaining of the SDS-PAGE bands, was obtained by adding the gel permeation chromatographic step in tandem.

  • PDF

Fluid-structure Interaction Analysis of Large Sandwich Panel Structure for Randomly Distributed Wind Load considering Gust Effects (거스트 영향이 고려된 랜덤 분포 풍하중에 대한 대형 샌드위치 패널 구조물의 유체-구조 연성해석)

  • Park, Dae Woong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.12
    • /
    • pp.1035-1044
    • /
    • 2013
  • Because of the high specific stiffness and strength inherent in the sandwich structure composed of facesheet that resists in-plane loads and a core that resists out-of-plane loads, it is often used for large and light-weighted structures. However, inevitably the increased flexibility allows greater deformation-based disturbances in the structures. Thus, it is necessary to analyze the structural safety. To obtain more accurate analytical results, the input disturbances must more closely simulate real load conditions; to improve accuracy, non-linear elements such as gust effects were considered. In addition, the structural safety was analyzed for the iso-grid sandwich panel structure using fluid-structure interactions. For a more realistic simulation, flow velocity fields, which consider the effects of irregular gust fluctuation, were generated and the coupled field was analyzed by mapping the pressure and displacement.

A Review of the Possible Causes of Negative Source Impedance in Fluid Machines (유체기계에 있어서 부의 음원 임피던스의 원인에 관한 고찰)

  • ;Keith S. Peat
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.76-82
    • /
    • 2001
  • Most fluid machines can be considered as periodic noise sources when operated under constant conditions, which allows for a frequency domain representation of the source and the associated acoustic field In the duct. In such a representation, the source is characterized by frequency-dependent values of both strength and impedance. Although knowledge of these values can be gained by either experimentation or by modeling, one-port acoustic characteristics of an in-duct source with high flow velocity, high temperature, and high sound level can be measured only by the multiload method using an overdetermined set of open pipes with different lengths as applied loads. However, the problem is that negative source resistances have been often measured. This paper reviews the possible causes of the problem, with reference to experimental and theoretical results, in an attempt to clarify the issue. A new interpretation is given for the violation of basic assumptions and the defect in the algorithm of multiload method. The major cause and mechanism of the problem is due to the violation of time invariance assumption of the source and the load impedance can seriously affect the final measured result of source impedance.

  • PDF

Optimal Design of New MR Mount for Diesel Engine of Ship (선박디젤엔진을 위한 새로운 MR 마운트의 최적설계)

  • Do, Xuan-Phu;Park, Joon-Hee;Woo, Jae-Kwan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.93-99
    • /
    • 2012
  • This paper presents an optimal design of magnetorheological (MR) fluid based mount (MR mount in short) which can be applicable to vibration control of diesel engine of ship. In this work, a mixed - mode including squeeze mode, flow mode and shear mode is proposed and designed. In order to determine actuating damping force of MR mount required for efficient vibration control, excitation force from diesel engine is analyzed. In this analysis, a model of V-type engine is considered and the relationship between velocity and pressure of gas in torque of the piston is derived. Subsequently, by integrating the field-dependent rheological properties of commercially available MR fluid with the excitation force an appropriate size of MR mount is designed. In addition, in order to achieve maximum actuating force with geometric constraints design optimization is undertaken using ANSYS software. Through the magnetic density analysis, optimal design parameters such as bottom gap and radius of coil are determined.

  • PDF