• Title/Summary/Keyword: fluid and flow

Search Result 7,252, Processing Time 0.041 seconds

Pressure Drop in a Circular Pipe of Waste Collection Piping System (쓰레기 관로 이송 시스템의 관로 압력강하 평가)

  • Jang, Choon-Man;Lee, Sang-Yun;Suh, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.55-60
    • /
    • 2007
  • This paper describes an evaluation method of pressure drop in a circular pipe of waste collection piping system. Accurate pressure drop in a piping system is very important to determine the capacity of turbo blower, which is one of the main elements in the system. Three-dimensional Navier-Stokes analysis is introduced to analyze the pressure drop in the piping system. Organic waste is selected and modeled using the result of site survey performed in an apartment area. Evaluation method of pressure drop used In the present numerical simulation is performed in the shortened pipe line prior to the calculation of the real system. Throughout the numerical simulation, pressure drop in a waste pipe is obtained and compared to the value determined by analytical method. The pressure drop obtained by numerical simulation has a good agreement with that of the analytic method. It is noted that present evaluation method is effective to determine a pressure drop in the piping system. Detailed flow characteristics inside the pipe line are also analyzed and discussed.

Cycle Analysis and Experiment for a Small-Scale Organic Rankine Cycle Using a Partially Admitted Axial Turbine (부분분사 축류형 터빈을 이용한 소규모 유기랭킨 사이클의 실험 및 예측에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.33-41
    • /
    • 2015
  • Organic Rankine cycle (ORC) has been used to generate electrical or mechanical power from low-grade thermal energy. Usually, this thermal energy is not supplied continuously at the constant thermal energy level. In order to optimally utilize fluctuating thermal energy, an axial-type turbine was applied to the expander of ORC and two supersonic nozzle were used to control the mass flow rate. Experiment was conducted with various turbine inlet temperatures (TIT) with the partial admission rate of 16.7 %. The tip diameter of rotor was to be 80 mm. In the cycle analysis, the output power of ORC was predicted with considering the load dissipating the output power produced from the ORC as well as the turbine efficiency. The predicted results showed the same trend as the experimental results, and the experimental results showed that the system efficiency of 2 % was obtained at the TIT of $100^{\circ}C$.

Performance Test of Turbopump Assembly for 75 Ton Liquid Rocket Engine Using Model Fluid (75톤급 액체로켓엔진용 터보펌프 조립체의 상사매질 성능시험)

  • Hong, Soon-Sam;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.56-61
    • /
    • 2011
  • Performance test of a full-scale turbopump assembly for a 75 ton class liquid rocket engine was carried out at full speed. Model fluid was used as a working medium: liquid nitrogen for the oxidizer pump, water for the fuel pump, and hot air for the turbine. The turbopump was operated stably, satisfying the performance requirements. Head coefficient and flow coefficient of the pumps remained constant at the speed-increasing period. In terms of performance characteristics of pumps and turbine, the results from the turbopump assembly test showed a good agreement with those from the turbopump component tests.

The FSI Analysis Evaluation of Strength for the Wind Turbine Rotor Blade Improved by the Aramid Fiber (아라미드섬유 보강 풍력발전기 로터 블레이드의 연성해석 강도평가)

  • Kim, Seok-Su;Kang, Ji-Woong;Kwon, Oh-Heon
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.17-23
    • /
    • 2015
  • Because of the energy resources shortage and global pollution, the wind power systems have been developed consistently. Among the components of the wind power system, the rotor blades are the most important component. Generally it is made of GFRP material. Recently, GFRP material has been replaced by CFRP composite material in the blade which has an aerodynamic profile and twisted tip. However the failures has occurred in the trailing edge of the blade by the severe wind loading. Thus, tougher material than CFRP material is needed as like the aramid fiber. In this study, we investigated the mechanical behaviors of the blade using aramid fiber composites about wind speed variation. One-way FSI (fluid-structure interaction)analysis for the wind rotor blade was conducted. The structural analyses using the surface pressure loading resulted from wind flow field analysis were carried out. The results and analysis procedure in this paper can be utilized for the best strength design of the blade with aramid fiber composites.

Numerical Simulation of Three-Dimensional Motion of Droplets by Using Lattice Boltzmann Method

  • Alapati, Suresh;Kang, Sang-Mo;Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.2-5
    • /
    • 2008
  • This study describes the numerical simulation of three-dimensional droplet formation and the following motion in a cross-junction microchannel by using the Lattice Boltzmann Method (LBM). Our aim is to develop the three-dimensional binary fluids model, consisting of two sets of distribution functions to represent the total fluid density and the density difference, which introduces the repulsive interaction consistent with a free-energy function between two fluids. We validated the LBM code with the velocity profile in a 3-dimensional rectangular channel. Then, we applied our code to the numerical simulation of a binary fluid flow in a cross-junction channel focusing on the investigation of the droplet formulation. Due to the pressure and interfacial-tension effect, one component of the fluids which is injected from one inlet is cut off into many droplets periodically by the other component which is injected from the other inlets. We considered the effect of the boundary conditions for density difference (order parameter) on the wetting of the droplet to the side walls.

  • PDF

Case Study of Repair Works on Surge Suppression Device for Booster Pumping Station (가압펌프장의 수격완화설비에 대한 보수·보강 사례)

  • Kim, Sang-gyun;Lee, Dong-keun;Lee, Gye-bok;Kim, Kyung-yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.20-26
    • /
    • 2005
  • When the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity. The field tests on the waterhammer were carried out for Pangyo booster pumping station in which had six booster pumps and two in-line pumps with the motor of output 1,700 kW, respectively. The booster pumping station was equipped with the pump control valve as the main surge suppression device, and the surge relief valve as auxiliary one. But the pump control valve had not early controlled in the planned closing mode, the slamming occurred to the valve of which abruptly closed during the large reverse flow. Because the positive pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the pump control valve was damaged. After the air chambers were additionally installed in the booster pumping station, it was preyed that the water supply system acquire the safety and reliability on the pressure surge.

Experiments on Single-Disk Pumps for the Transportation of Micro-scale Water Life (미소 수중 생물체 이송용 단판 디스크 펌프의 성능 실험)

  • Zhang, Z.Q.;Chang, S.M.;Jeong, Y.H.;Yang, J.S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.18-25
    • /
    • 2011
  • A boundary-layer pump with a single disk has been experimented to obtain its characteristic curve by changing the impeller of a centrifugal pump to a single disk. The primary objective to use of these types of pumps is to avoid hurting water life during transportation unnecessarily. The change of impeller should degrade the performance of pump, so we used the method to increase the roughness on the disk with sandpaper and mesh. The enhancement of shear force from the rotation of disk to the internal flow brought an augmentation of momentum transport, and the characteristics were far improved from the original single-disk pump without decreasing the survival rate of water life in the case of Pseudobagrus fulvidraco (bullhead fish). However, in the case of Artemia cyst (zooplankton), the survival rate was very degraded due to the micro scale smaller than turbulent eddy size. The result of this study could be used for the design of transportation and bio-filtering of water lying on a specific bandwidth of its scale of size.

Study on Analytic of Opening Angles for Muffler Variable Valve of Automobile (자동차 머플러 내의 가변밸브의 열림 각에 관한 해석적 연구)

  • Park, Chungyeol;Kim, Kwonse;Kim, Jongil;Choi, Dooseuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.190-196
    • /
    • 2014
  • Exhaust system by reinforcement of environment regulation came to the foe study necessity. And Exhaust system has necessary to increase the engine performance and silence. From this cause, Automobile has significantly considered production expense. this study makes process for checking the characteristics about Exhaust variable valve within muffler. Variable valve might reduce the baffle within muffler, It was possible to remove the front muffler. Therefor, To miniaturize a size of muffler might be increased by performance through cost-cutting effect and controling of back pressure. Because the Study on Variable valve installed within muffler, to measure the real data was hardly resulted one of the assignments. From manufactured conduct device, might measure data one of piece which was up-graded of problem. Considering to these point, stressed pressure distribution has analyzed on cross section, floating characteristics about velocity distribution around variable valve using analysis as computational fluid dynamics of Ansys with completed measurement data.

Optimal Design for a Conic Winglet of a Dual Type Combined Fan (이중구조팬의 Conic Winglet 최적설계)

  • Kim, Jin-Wook;Kim, Woo-Teak;Ryu, Min-Hyoung;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.468-476
    • /
    • 2016
  • In this study, the conic winglet which is made by rotating wing tip airfoil by each 3 axis is applied to the dual type combined fan to reduce the wing tip leakage loss. Computational Fluid Dynamics is used to calculate the loss and optimum technique is used to get minimum loss. Optimization results shows that total pressure loss coefficient was reduced by 3.4 %, and optimization model was a bended shape at the end of wing forward to pressure side.

Effects of floating-ring seal clearance on the performance of the pump (플로팅링 실 간극이 터보펌프용 펌프의 성능에 미치는 영향)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Dae-Jin;Hong, Soon-Sam;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.38-43
    • /
    • 2007
  • Pumps for a turbopump generally operate under high rotational speeds and large head rise conditions. Therefore, reliability is a prime design requirement. Floating-ring type seals are frequently employed in a turbopump because of robustness despite of low hydraulic efficiency. There are many researches on the floating-ring seal itself, but the effects of the floating ring seals on the performance of the whole pump are not widely studied in spite of their importance. In the present study, experimental and computational studies on the effects of the radial clearance of the floating ring seals on the performance of a pump were performed. The experimental results showed that the head rise and efficiency increased as the floating-ring seal clearance was decreased. The results also showed the possibility that the leakage flow which was injected to the inlet of the inducer could enhance the suction performance of the inducer by diminishing the size of the backflows.