• Title/Summary/Keyword: fluid and flow

Search Result 7,252, Processing Time 0.034 seconds

The Discharge Performance Optimization of a Forced Convection Type PCM Refrigeration Module Used in a Refrigeration Truck (냉동트럭용 강제대류방식 PCM 냉동모듈의 방냉성능 최적화에 관한 연구)

  • Lel, Xu;Kim, Wonuk;Lee, Sang-Ryoul;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.624-630
    • /
    • 2013
  • A truck refrigeration system using phase change material (PCM) is expected to have a lower noise level, reduced energy cost, and much lower local greenhouse gas emission. Recently, a forced convection type PCM refrigeration module has been developed. As the operation time increases, the PCM around the air inlet melts, because of a large temperature difference between the PCM and air. Therefore, the latent heat transfer area decreases and the heat transfer rate of the module decreases even though there is a lot of PCM which does not melt around the air outlet. A computational fluid dynamic modeling of the PCM refrigeration module was developed and validated by the experiment. Using the CFD, the design parameters, such as the mass flow rate of the air and roughness of the slab, were investigated to improve the heat transfer inhomogeneity. As a result, the adoption of partial roughness on the slabs improved the heat transfer inhomogeneity and reduced a fan power.

GEOMETRICAL EFFECTS ON THERMAL-HYDRAULIC PERFORMANCE OF A MULTIPLE JET IMPINGEMENT COOLING SYSTEM IN A DIVERTOR OF NUCLEAR FUSION REACTOR (핵융합로 디버터 다중충돌제트 냉각시스템의 형상변화가 열수력학적 특성에 미치는 영향)

  • Jung, H.Y.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2017
  • A numerical study has been performed to evaluate thermal-hydraulic performance of a finger type cooling module with multiple-jet impingement in a divertor of nuclear fusion reactor. To analyze conjugate heat transfer in both solid and fluid domains, numerical analysis of the flow using three-dimensional Reynolds-averaged Navier-Stokes equations has been performed with shear stress transport turbulence model. The computational domain for the cooling module consisted of a single fluid domain and three solid domains; tile, thimble, and cartridge. The numerical results for the temperature variation on the tile were validated in comparison with experimental data under the same conditions. A parametric study was performed with four geometric parameters, i.e., angles between x-axis and centerlines of hole 1, 2, 3 and 4. The results indicate that the heat transfer rate was increased by 2.7% and 0.7% by the angle ${\theta}_1$ and angle ${\theta}_2$, respectively, and that the pressure drop was decreased by up to 1.8% by the angle ${\theta}_3$.

Design Optimization of a Single-Stage Transonic Axial Compressor and Test Evaluation of Its Aerodynamic Performance (1단 천음속 축류압축기의 최적 설계 및 공력 성능 시험 평가)

  • Park, Tae Choon;Kang, Young-Seok;Hwang, Oh-Sik;Song, Ji-Han;Lim, Byeung Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.77-84
    • /
    • 2012
  • The aerodynamic performance of a single-stage transonic axial compressor was experimentally evaluated by measuring pressure and temperature distribution at the inlet and outlet of the compressor. The compressor was developed by Korea Aerospace Research Institute through multidisciplinary design optimization (MDO) method, especially integrating aerodynamic performance and structural stability. The test results show that the pressure ratio is 1.65 and the efficiency is 85.8 % at design point, where the corrected speed is 22,000 rpm and the corrected mass flow rate is 15.4 kg/s, and it has a good agreement with the design target and computational results. The distribution of pressure ratio is very steep at design speed, compared with the trend of other subsonic compressors. Also the static pressure distribution on the stator casing shows that the blade loading is gradually increasing through the stage as designed.

A Combined Rotary Compressor-vane Expander (일체형 로타리 압축기-베인 팽창기)

  • Kim, Hyun Jin;No, Young Jae;Kim, Yong Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.12-19
    • /
    • 2015
  • As a means of improving cycle performance of a R410A air-conditioning system, a combined structure of compressor and expander was introduced. A vane rotary type expander was designed to share a common shaft with twin type rolling piston rotary compressor in a housing. Numerical simulation on the performance of the combined compressor and expander was carried out. At ARI condition, the volumetric and total efficiencies of the designed vane expander were 69.37% and 30.23%, respectively. With the application of this expander, the compressor input was reduced by 3.91%, and the cooling capacity was increased by 3.98%. As a result, COP of the air-conditioning system was improved by 8.2%. As the pressure difference between the condenser and the evaporator becomes large, COP improvement increases unless the mass flow rate in the expander exceeds that in the compressor.

Analysis and Alternative Circuit Design of Pneumatic Circuit for An Automotive Air Suspension (자동차 공기현가 공압회로 해석 및 대체회로 설계)

  • Lee, J.C.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.17-25
    • /
    • 2008
  • This study presents an analytical model of the pneumatic circuit of an air suspension system to analyze the characteristics of vehicle height control. The analytical model was developed through the co-simulation of Simulink(air spring) and HyPneu(pneumatic circuit). Variant effective area of air spring and flow coefficients of pneumatic valves were estimated experimentally prior to the system test, and utilized in simulation. One-comer test apparatus was established using the components of commercial air suspension products. The results of simulation and experiment were so close that the proposed analytical model in this study was validated. However the frictional loss of conduit and heat dissipation which were ignored in this study need to be considered in future study. As an application example of proposed analytical model, an alternative pneumatic circuit of air suspension to conventional WABCO circuit was evaluated. The comparison of simulation results of WABCO circuit and alternative circuit show that proposed analytical model of co-simulation in this study is useful for the study of pneumatic system of automotive air suspension.

  • PDF

Air Similarity Test for the Evaluation of Aerodynamic Performance of Steam Turbine (스팀터빈의 공력성능 평가를 위한 공기 상사실험)

  • Lim, Byeung-Jun;Lee, Eun-Seok;Yang, Soo-Seok;Lee, Ik-Hyoung;Kim, Young-Sang;Kwon, Gee-Bum
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.29-35
    • /
    • 2004
  • The turbine efficiency is an important factor in power plant, and accurate evaluation of steam turbine performance is the key issue in turbo machinery industry. The difficulty of evaluating the steam turbine performance due to its high steam temperature and pressure environment makes the most steam turbine tests to be replaced by air similarity test. This paper presents how to decide the similarity conditions of the steam turbine test and describes its limitations and assumptions. The test facility was developed and arranged to conduct an air similarity turbine performance test with various inlet pressure, temperature and mass flow rate. The eddy-current type dynamometer measures the turbine-generated shaft power and controls the rotating speed. Pressure ratio of turbine can be controled by back pressure control valve. To verify its test results, uncertainty analysis was performed and relative uncertainty of turbine efficiency was obtained.

Impact performance for high frequency hydraulic rock drill drifter with sleeve valve

  • Guo, Yong;Yang, Shu Yi;Liu, De Shun;Zhang, Long Yan;Chen, Jian Wen
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.39-46
    • /
    • 2016
  • A high frequency hydraulic rock drill drifter with sleeve valve is developed to use on arm of excavator. In order to ensure optimal working parameters of impact system for the new hydraulic rock drill drifter controlled by sleeve valve, the performance test system is built using the arm and the hydraulic source of excavator. The evaluation indexes are gained through measurement of working pressure, supply oil flow and stress wave. The relations of working parameters to impact system performance are analyzed. The result demonstrates that the maximum impact energy of the drill drifter is 98.34J with impact frequency of 71HZ. Optimal pressure of YZ45 rock drill is 12.8 MPa-13.6MPa, in which the energy efficiency reaches above 58.6%, and feature moment of energy distribution is more than 0.650.

An experimental study on ice slurry creation by injection of an aqueous solution (수용액 분사에 의한 아이스 슬러리의 제조에 관한 실험적 연구)

  • Lee, Yong-Koo;Oh, Cheol
    • Journal of Navigation and Port Research
    • /
    • v.34 no.1
    • /
    • pp.71-75
    • /
    • 2010
  • This study is experimented to observe an influence of experimental conditions on production characteristics of slurry ice by injection operating water to cooling plate. And at this experiment it used ethylene glycol-water solution and the concentration is 10 to 20wt%. The experimental apparatus was constructed of ethylene glycol-water solution and slurry ice storage tank, brine tank, pumps for ethylene glycol-water solution and brine circulating, a mass flow-meter, data logger for fluid temperature measuring and a vertical circular tube with single copper plate as test section. The experiments were carried out under various conditions, with mean velocity of fluid at the entry ranging from 1.0 to 2.0m/s and the cooling temperature of $-17^{\circ}C$ to $-10^{\circ}C$.

Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods

  • Zamani, Abbas;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.671-682
    • /
    • 2017
  • In this research, seismic response of pipes is examined by applying nanotechnology and piezoelectric materials. For this purpose, a pipe is considered which is reinforced by carbon nanotubes (CNTs) and covered with a piezoelectric layer. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via cylindrical shell element and Mindlin theory. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite and to consider the effect of the CNTs agglomeration on the scismic response of the structure. Moreover, the dynamic displacement of the structure is extracted using harmonic differential quadrature method (HDQM) and Newmark method. The main goal of this research is the analysis of the seismic response using piezoelectric layer and nanotechnology. The results indicate that reinforcing the pipeline by CNTs leads to a reduction in the displacement of the structure during an earthquake. Also the negative voltage applied to the piezoelectric layer reduces the dynamic displacement.

Numerical simulations of hydrodynamic loads and structural responses of a Pre-Swirl Stator

  • Bakica, Andro;Vladimir, Nikola;Jasak, Hrvoje;Kim, Eun Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.804-816
    • /
    • 2021
  • This paper investigates the effect of different flow models on the Pre-Swirl-Stator structural response from the perspective of a non-existing unified design procedure. Due to viscous effects near the propeller plane, the hydrodynamic solution is calculated by Computational Fluid Dynamics (CFD). Three different models are analysed: without the propeller, with the actuator disk and with the propeller. The main intention of this paper is to clarify the effects of the propeller model on the structural stresses in calm-water and waves which include the ship motion. CFD simulations are performed by means of OpenFOAM, while the structural response is calculated by means of the Finite Element Method (FEM) solver NASTRAN. Calm-water results have shown the inclusion of the propeller necessary from the design perspective, while the wave simulations have shown negligible propeller influence on the resulting stresses arising from the ship motions.