• Title/Summary/Keyword: fluid and flow

Search Result 7,251, Processing Time 0.034 seconds

Flow-induced vibrations of dual-cylinders in axial flow via LES simulations

  • Kangfei Shi;Yu Cao;Zhanying Zheng;Shun Lu;Menglong Liu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3812-3825
    • /
    • 2024
  • The axial-flow-induced vibration of fuel rods in the nuclear power plant is closely related to nuclear safety. In this article, a numerical study is performed on vibration of two elastic cylinders arranged side-by-side in axial flow. Large eddy simulation is employed to predict the turbulent flow. The numerical method has been verified using the experimental root-mean-square vibration amplitude of a single cylinder. A wide range of inflow velocities u*, incident turbulence intensity Tu and space ratio P/D have been examined, where D and P are the diameter and centre-to-centre distance of the cylinders, respectively. The results show that the vibration amplitudes increase with an increasing u*, comparable to the case of a single cylinder in axial flow. However, the two cylinders could bend outwards during a relatively high u* and low Tu. Although Tu significantly affects the amplitudes of the cylinders, it does not change the vibration frequency and the critical velocity at which buckling instability occurs. As the gap between the two cylinders is sufficiently small, the vibration amplitude enhances significantly due to the pronounced hydrodynamic interaction between the two elastic cylinders and surrounding fluid. The direction of buckling is no longer random but fixed.

UNSTEADY HARTMANN FLOW WITH HEAT TRANSFER IN THE PRESENCE OF UNIFORM SUCTION AND INJECTION

  • Attia Hazem A.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.1 s.31
    • /
    • pp.1-10
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to a constant pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the magnetic field and the uniform suction and injection on both the velocity and temperature distributions is examined.

  • PDF

Adaptive fluid-structure interaction simulation of large-scale complex liquid containment with two-phase flow

  • Park, Sung-Woo;Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.559-573
    • /
    • 2012
  • An adaptive modeling and simulation technique is introduced for the effective and reliable fluid-structure interaction analysis using MSC/Dytran for large-scale complex pressurized liquid containment. The proposed method is composed of a series of the global rigid sloshing analysis and the locally detailed fluid-structure analysis. The critical time at which the system exhibits the severe liquid sloshing response is sought through the former analysis, while the fluid-structure interaction in the local region of interest at the critical time is analyzed by the latter analysis. Differing from the global coarse model, the local fine model considers not only the complex geometry and flexibility of structure but the effect of internal pressure. The locally detailed FSI problem is solved in terms of multi-material volume fractions and the flow and pressure fields obtained by the global analysis at the critical time are specified as the initial conditions. An in-house program for mapping the global analysis results onto the fine-scale local FSI model is developed. The validity and effectiveness of the proposed method are verified through an illustrative numerical experiment.

Influence of the empirical coefficients of cavitation model on predicting cavitating flow in the centrifugal pump

  • Liu, Hou-lin;Wang, Jian;Wang, Yong;Zhang, Hua;Huang, Haoqin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.119-131
    • /
    • 2014
  • The phenomenon of cavitation is an unsteady flow, which is nearly inevitable in pump. It would degrade the pump performance, produce vibration and noise and even damage the pump. Hence, to improve accuracy of the numerical prediction of the pump cavitation performance is much desirable. In the present work, a homogenous model, the Zwart-Gerber-Belamri cavitation model, is considered to investigate the influence of the empirical coefficients on predicting the pump cavitation performance, concerning a centrifugal pump. Three coefficients are analyzed, namely the nucleation site radius, evaporation and condensation coefficients. Also, the experiments are carried out to validate the numerical simulations. The results indicate that, to get a precise prediction, the approaches of declining the initial bubble radius, the condensation coefficient or increasing the evaporation coefficient are all feasible, especially for declining the condensation coefficient, which is the most effective way.

An enhanced incompressible SPH method for simulation of fluid flow interactions with saturated/unsaturated porous media of variable porosity

  • Shimizu, Yuma;Khayyer, Abbas;Gotoh, Hitoshi
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.63-86
    • /
    • 2022
  • A refined projection-based purely Lagrangian meshfree method is presented towards reliable numerical analysis of fluid flow interactions with saturated/unsaturated porous media of uniform/spatially-varying porosities. The governing equations are reformulated on the basis of two-phase mixture theory with incorporation of volume fraction. These principal equations of mixture are discretized in the context of Incompressible SPH (Smoothed Particle Hydrodynamics) method. Associated with the consideration of governing equations of mixture, a new term arises in the source term of PPE (Poisson Pressure Equation), resulting in modified source term. The linear and nonlinear force terms are included in momentum equation to represent the resistance from porous media. Volume increase of fluid particles are taken into consideration on account of the presence of porous media, and hence multi-resolution ISPH framework is also incorporated. The stability and accuracy of the proposed method are thoroughly examined by reproducing several numerical examples including the interactions between fluid flow and saturated/unsaturated porous media of uniform/spatially-varying porosities. The method shows continuous pressure field, smooth variations of particle volumes and regular distributions of particles at the interface between fluid and porous media.

Analysis of Fluid Flows in a Stirred Tank Using Computational Fluid Dynamics (전산유체역학을 이용한 교반탱크 내 유체흐름 해석)

  • Kim, Mi Jin;Lee, Kyung Mi;Park, Kyun Young
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.337-341
    • /
    • 2010
  • The flow patterns in a stirred tank, 1m in diameter and 1 m in height, were studied using CFX, a commercial computational fluid dynamics program, with the impeller rotation speed, the impeller blade angle and the tank-bottom shape varied and the baffles included or excluded. A vortex was observed in the center of the tank in the absence of the baffles, and the intensity of the vortex increased with increasing the rotation speed. The vortex was considerably reduced in the presence of the baffles. An increase in the blade angle increased the vertical flow and decreased the vortex intensity. The flow in the corners of the tank bottom turned smoother as the tank bottom was varied in shape from flat to round.

Heat Transfer Behavior of Viscoelastic Fluid including buoyancy effect with Modified Temperature Dependent Viscosity Model in a Rectangular Duct (수정점도 모델을 이용한 직사각형 덕트에서의 부력을 고려한 점탄성 유체의 열전달 특성)

  • Sohn C. H.;Jang J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.192-198
    • /
    • 1999
  • The present study proposes modified temperature-dependent non-Newtonian viscosity model and investigates flow characters and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The proposed modified temperature dependent viscosity model has non-zero value near the high temperature and high shear rate region while on the existing viscosity models have zero value. Two versions of thermal boundary conditions involving difference combination of heated walls and adiabatic walls are analyzed in this study. The combined effect of temperature dependent viscosity, buoyancy, and secondary flow caused by second normal stress difference are ail considered. The Reiner-Rivlin model is adopted as a viscoelastic fluid model to simulate the secondary flow caused by second normal stress difference. Calculated Nusselt numbers by the modified temperature-dependent viscosity model gives under prediction than the existing temperature-dependent viscosity model in the regions of thermally developed with same secondary normal stress difference coefficients with experimental results in the regions of thermally developed. The heat transfer enhancement of the viscoelastic fluid in a 2:1 rectangular duct is highly dependent on the secondary flow caused by the magnitude of second normal stress difference.

  • PDF

Tip Clearance Effects on Inlet Hot Streaks Migration Characteristics in Low Pressure Stage of a Vaneless Counter-Rotating Turbine

  • Zhao, Qingjun;Wang, Huishe;Zhao, Xiaolu;Xu, Jianzhong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.25-34
    • /
    • 2008
  • In this paper, three-dimensional multiblade row unsteady Navier-Stokes simulations at a hot streak temperature ratio of 2.0 have been performed to reveal the effects of rotor tip clearance on the inlet hot streak migration characteristics in low pressure stage of a Vaneless Counter-Rotating Turbine. The hot streak is circular in shape with a diameter equal to 25% of the high pressure turbine stator span. The hot streak center is located at 50% of the span and the leading edge of the high pressure turbine stator. The tip clearance size studied in this paper is 2.0mm(2.59% high pressure turbine rotor height, and 2.09% low pressure turbine rotor height). The numerical results show that the hot streak is not mixed out by the time it reaches the exit of high pressure turbine rotor. The separation of colder and hotter fluid is observed at the inlet of low pressure turbine rotor. Most of hotter fluid migrates towards the rotor pressure surface, and only little hotter fluid migrates to the rotor suction surface when it convects into the low pressure turbine rotor. And the hotter fluid migrated to the tip region of the high pressure turbine rotor impinges on the leading edge of the low pressure turbine rotor after it goes through the high pressure turbine rotor. The migration of the hotter fluid directly results in very high heat load at the leading edge of the low pressure turbine rotor. The migration characteristics of the hot streak in the low pressure turbine rotor are dominated by the combined effects of secondary flow and leakage flow at the tip clearance. The leakage flow trends to drive the hotter fluid towards the blade tip on the pressure surface and to the hub on the suction surface, even partial hotter fluid near the pressure surface is also driven to the rotor suction surface through the tip clearance. Compared with the case without rotor tip clearance, the heat load of the low pressure turbine rotor is intensified due to the effects of the leakage flow. And the numerical results also indicate that the leakage flow effect trends to increase the low pressure turbine rotor outlet temperature at the tip region.

  • PDF

Development of Y Strainer Type Automatic Flow Rate Regulating Valve (Y 스트레이너형 자동 정유량 조절 밸브의 개발)

  • Yoon, Joon-Yong;Kwon, Woo-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.49-55
    • /
    • 2007
  • An 'Y' strainer type automatic flow rate regulating valve, which functions are to remove impurities from hot water inside the pipe and to maintain a constant flow rate regardless of variations of the differential pressure between valve inlet and outlet at the same time, is developed for distributing hot water equally to several pipes with district heating or central heating system. Numerical analysis of the three dimensional turbulent flow field in a valve shape is carried out to confirm the flow field whether the designed regulator shape is acceptable or not. The final developed valve improves installation time and cost and maintenance ability comparing with set-up 'Y' strainer and regulator separately. Tolerance for the nominal flow rate is also satisfied within ${\pm}5%$.

Study of Flow Control Range according to Valve Type (밸브 형식별 유량제어범위 결정에 관한 연구)

  • Park, Jong-Ho;Park, Han-Yung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.39-47
    • /
    • 2011
  • Flow control range of valve, which is installed on pipeline, varies according to valve type, pipe diameter, pipe length, roughness, and elevation difference of both ends of pipeline. A lot of computation efforts and knowledge are needed to estimate flow control range of valve, considering above many parameters. The table of flow control range of each valve type is presented for convenience of pipeline design engineers who must make decision of valve size and type in this study. Also the reason that butterfly valve is recommended for flow control, and gate valve is forbidden is presented via quantification and figures in this study.