• Title/Summary/Keyword: fluid and flow

Search Result 7,251, Processing Time 0.038 seconds

A Study on Dynamic Behavior of Simply Supported Fluid Flow Pipe with Crack and Moving Mass (크랙과 이동질량을 가진 유체유동 단순지지 파이프의 동특성에 관한 연구)

  • Yoon, Han-Ik;Jin, Jong-Tae;Son, In-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.419-426
    • /
    • 2004
  • In this paper, studied about the effect of open crack and the moving mass on the dynamic behavior of simply supported pipe conveying fluid. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass, the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. Therefore, the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow is increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The position of the crack is located in the middle point of the pipe, the mid-span deflection of simply supported pipe presents maximum deflection.

Fluid/Structure Coupled Analysis of 3D Turbine Blade Considering Stator-rotor Interaction (스테이터-로터 상호간섭 효과를 고려한 3차원 터빈 블레이드의 유체/구조 연계해석)

  • Kim, Yu-Sung;Kim, Dong-Hyun;Kim, Yo-Han;Park, Oung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.764-772
    • /
    • 2009
  • In this study, fluid/structure coupled analyses have been conducted for 3-D stator and rotor configuration. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate fluid/structure responses of general stator-rotor configurations. To solve the fluid/structure coupled problems, fluid domains are modeled using the structural grid system with dynamic moving and local deforming techniques. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras(S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3-D turbine blades for fluid-structure interaction(FSI) problems. Detailed fluid/structure analysis responses for stator-rotor interaction flow conditions are presented to show the physical performance and flow characteristics.

Fluid/structure Coupled Analysis of 3D Turbine Blade Considering Stator-Rotor Interaction (스테이터-로터 상호간섭 효과를 고려한 3차원 터빈 블레이드의 유체/구조 연계해석)

  • Kim, Yu-Sung;Kim, Dong-Hyun;Kim, Yo-Han;Park, Oung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.563-569
    • /
    • 2008
  • In this study, fluid/structure coupled analyses have been conducted f3r 3-D stator and rotor configuration. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate fluid/structure responses of general stator-rotor configurations. To solve the fluid/structure coupled problems, fluid domains are modeled using the structural grid system with dynamic moving and local deforming techniques. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3-D turbine blades for fluid-structure interaction (FSI) problems. Detailed fluid/structure analysis responses for stator-rotor interaction flow conditions are presented to show the physical performance and flow characteristics.

  • PDF

Analysis of Fluid Flow Characteristics Around Rolling Element in Ball Bearings (볼 베어링의 구름 요소 주위 유동 특성에 대한 해석)

  • Jo, Jun Hyeon;Kim, Choong Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.278-282
    • /
    • 2012
  • Various bearings such as deep-groove ball bearings, angular-contact ball bearings, and roller bearings are used to support the load and to lubricate between the shaft and the housing. The bearings of potential rolling systems in a turbo pump are the deep-groove ball bearings as comparing with the bearings with rolling elements such as cylindrical rollers, tapered cylindrical rollers, and needle rollers. The deep-groove ball bearings consist of rolling elements, an inner raceway, an outer raceway and a retainer that maintain separation and help to lubricate the rolling element that is rotating in the raceways. In the case of water-lubricated ball bearings, however, fluid friction between the ball and raceways is affected by the entry direction of flow, rotation speed, and flow rate. In addition, this friction is the key factor affecting the bearing life cycles and reliability. In this paper, the characteristics of flow conditions corresponding to a deep-groove ball bearing are investigated numerically, with particular focus on the friction distribution on the rolling element, in order to extend the analysis to the area that experiences solid friction. A simple analysis model of fluid flow inside the water-lubricated ball bearing is analyzed with CFD, and the flow characteristics at high rotation speeds are presented.

ANALYSIS ON STEAM CONDENSING FLOW USING NON-EQUILIBRIUM WET-STEAM MODEL (비평형 습증기 모델을 적용한 증기 응축 유동 해석)

  • Kim, C.H.;Park, J.H.;Ko, D.G.;Kim, D.I.;Kim, Y.S.;Baek, J.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • When the steam is used as working fluid in fluid machinery, different from other gases as air, phase transition (steam condensation) can occur and it affects not only the flow fields, but also machine performance & efficiency. Therefore, considering phase transition phenomena in CFD calculation is required to achieve accurate prediction of steam flow and non-equilibrium wet-steam model is needed to simulate realistic steam condensing flow. In this research, non-equilibrium wet-steam model is implemented on in-house code(T-Flow), the flow fields including phase transition phenomena in convergent-divergent nozzle are studied and compared to results of advance researches.

THD Analysis of a Hydraulic Servo Valve Using CFD (CFD를 이용한 유압 서보밸브의 열유체 해석)

  • Jeong, Y.H.;Park, T.J.
    • Journal of Drive and Control
    • /
    • v.11 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • Hydraulic servo valves are widely used in various fluid power systems because of their fast response and precision control. In this paper, we studied the effect of metering notch shapes and amount of their openings on the flow characteristics within the spool valve using a computational fluid dynamic (CFD) code, FLUENT. To obtain the results for more realistic operating conditions, viscous heating due to the jet flow and viscosity variation of the hydraulic fluid with temperature were considered. For two types of notch shape, streamlines, oil temperature and viscosity distributions, and variations of flow and friction forces acting on spool were showed. The flow and friction forces affected by the metering notch shapes and their openings, and oil temperature rise near metering notch was significant enough to results in the jamming phenomenon. A thermohydrodynamic (THD) flow analysis adopted in this paper can be used in optimum design of hydraulic servo valves.

Magnetorheological fluids subjected to tension, compression, and oscillatory squeeze input

  • El Wahed, Ali K.;Balkhoyor, Loaie B.
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.961-980
    • /
    • 2015
  • Magnetorheological (MR) fluids are capable of changing their rheological properties under the application of external fields. When MR fluids operate in the so-called squeeze mode, in which displacement levels are limited to a few millimetres but there are large forces, they have many potential applications in vibration isolation. This paper presents an experimental and a numerical investigation of the performance of an MR fluid under tensile and compressive loads and oscillatory squeeze-flow. The performance of the fluid was found to depend dramatically on the strain direction. The shape of the stress-strain hysteresis loops was affected by the strength of the applied field, particularly when the fluid was under tensile loading. In addition, the yield force of the fluid under the oscillatory squeeze-flow mode changed almost linearly with the applied electric or magnetic field. Finally, in order to shed further light on the mechanism of the MR fluid under squeeze operation, computational fluid dynamics analyses of non-Newtonian fluid behaviour using the Bingham-plastic model were carried out. The results confirmed superior fluid performance under compressive inputs.

Analysis of Performance Characteristics by Inner Flow Path of Side Channel Type Ring Blower (사이드 채널형 링블로워의 임펠러 내부 유로에 따른 성능변화 분석)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Jeong, Kyung-Ho;Park, Woon-Jean
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.67-71
    • /
    • 2012
  • This study analyzed performance changes by an inner flow path of impeller groove for side channel type ring blower using CFD. Two models have the same side channel and clearance while one has an inner flow path and the other doesn't. To analyze the performance change of a ring blower, overall performance and local flow field were analyzed. For the overall performance, pressure increase and impeller torque were checked under the design flow condition. Under the design flow condition, pressure increase was greater for the model with the inner flow path. The model with the inner flow path showed improved efficiency because the area subject to torque decreased due to the creation of inner flow path. To analyze local flow field, a section was created from the representative location of each impeller groove toward the direction of radius. Inner channel pressure distribution depending on the rotation direction shows that the model with the inner flow path has pressure equilibrium of working fluid through the inner flow path. Velocity distribution of inside impeller groove shows that flow field was coupled and appeared to form an inner wall where the flow field was stabilized.

Study of Flow Field and Pressure Distribution on a Rotor Blade of HAWT in Yawed Flow Conditions

  • Maeda, Takao;Kamada, Yasunari;Okada, Naohiro;Suzuki, Jun
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.360-368
    • /
    • 2010
  • This paper describes the flow field and the blade pressure distribution of a horizontal axis wind turbine in various yawed flow conditions. These measurements were carried out with 2.4m-diameter rotor with pressure sensors and a 2-dimensional laser Doppler velocimeter for each azimuth angle in a wind tunnel. The results show that aerodynamic forces of the blade based on the pressure measurements change according to the local angle of attack during rotation. Therefore the wake of the yawed rotor becomes asymmetric for the rotor axis. Furthermore, the relations between aerodynamic forces and azimuth angles change according to tip speed ratio. By the experimental analysis, the flow field and the aerodynamic forces for each azimuth angle in yawed flow condition were clarified.

A Convergent Investigation on Flow Analysis by Type of Turbine Blade of Fluid Clutch (유체클러치 터빈 날개의 유형별 유동해석에 대한 융합연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.195-200
    • /
    • 2020
  • In this study, the flow analyses were performed on the fluid clutch turbine blade shapes of models 1, 2 and 3, with eight turbine blades tilted at 45 °, 40 °, and 35 ° angles on the propulsion shaft, respectively. The larger the angle of inclination on the propulsion shaft, the higher the flow pressure among the flow models after the back of the turbine blades. On the other hand, the smaller the angle of inclination on the propulsion shaft of the turbine wing, the lower the flow rate. It can be seen that the smaller inclination angle of the turbine blade surface on the propulsion shaft, i.e., the wing shape close to perpendicular to the flow of fluid, is more suitable for efficiently connecting and disconnecting the fluid clutch. By applying the flow analysis by type of turbine blade of fluid clutch,the study result at this paper is considered to be favorable as the convergent research material which can apply the aesthetic design.