• 제목/요약/키워드: fluctuations

검색결과 2,209건 처리시간 0.025초

차압교란치의 통계적 특성에 의한 2상유동양식의 판별 (Identification of Two-Phase Flow Patterns Based on Statistical Characteristics of Differential Pressure Fluctuations)

  • 이상천;이정표;김중엽
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1290-1299
    • /
    • 1990
  • 본 연구에서는 이러한 개념을 확장하여 직경이 26nm와 38nm인 두 개의 수평관 내 기액 2상유동에서 오리피스의 차압교란치의 확률밀도함수, 자기상관함수와 파워 스 펙트럼 밀도함수를 구하여 유동양식에 따른 이 들 통계치의 특성을 구명하였다. 본 연구에서 다룬 유동양식은 기포, 플러그, 슬러그, 성층, 파상, 환상, pseudo-slug 유 동이다. 이 결과 차압교란치의 통계적 해석을 통한 유동양식 판별법이 매우 유용하 다는 사실을 밝혔으며, 또 본 판별법을 관내 압력강하치의 통계적 해석을 통하여 유동 양식을 구분한 타 연구자들의 방법과 비교 분석하였다.

초크랄스키 단결정 성장 멜트에서 baroclinic 불안정에 의해 발생하는 유동과 온도 변동의 측정 (Measurement of the temperature and velocity fluctuations occurred by the baroclinic instability in the melt for Czochralski crystal growth method)

  • 손승석;이경우
    • 한국결정성장학회지
    • /
    • 제10권6호
    • /
    • pp.381-388
    • /
    • 2000
  • Czochralski 결정 성장 시스템에서 baroclinic 불안정성에 의해 발생하는 유동과 온도 변동에 대해 실험적으로 고찰하였다. 실리콘과 유사한 프란틀 수를 갖는 Wood's metal을 작동유체로 사용하고, 일체형 자석 프로브를 제작하여 멜트의 회전 유속을 측정하였다. 측정 결과 회전 유속은 멜트 바닥에 비해 자유 표면에서 빠르고 특히 결정 근처에서 유속이 증가하는 것을 확인하였다. 또한 도가니 회전 속도를 증가시키면서 속도와 온도 변동을 관찰한 결과 Ro<1.01, Ta>$9.63{\times}10^8$인 영역에서 baroclinic 불안정성이 나타나고, 이 영역에서 유동과 온도가 동일한 주파수를 가지고 변동하였다.

  • PDF

CFD와 공간분포를 고려한 반경험식을 이용한 해머헤드 발사체의 천음속 압력섭동 예측 (Prediction of Pressure Fluctuations on Hammerhead Vehicle at Transonic Speeds Using CFD and Semi-empirical Formula Considering Spatial Distribution)

  • 김영화;남현재;김준모;선철
    • 한국항공우주학회지
    • /
    • 제49권6호
    • /
    • pp.457-464
    • /
    • 2021
  • 위성발사체에 심각한 진동하중을 발생시키는 버펫 현상을 해석하기 위하여, CFD 해석과 반경험식을 결합하여 천음속 영역 해머헤드 발사체에서 발생할 수 있는 압력섭동을 예측하였다. RANS 해석을 수행하여 충격파 진동 영역, 박리영역, 박리 재부착 지점 등을 확인하였으며, 경계층 두께, 배제 두께, 경계층 끝단에서의 유동 정보를 계산하였다. RANS 결과와 공간 분포를 고려한 반경험식을 결합하여 해머헤드 페어링 주위의 압력 섭동과 파워스펙트럼을 예측하였고 시험 결과와 비교하였다.

Wind tunnel study on fluctuating internal pressure of open building induced by tangential flow

  • Chen, Sheng;Huang, Peng;Flay, Richard G.J.
    • Wind and Structures
    • /
    • 제32권2호
    • /
    • pp.105-114
    • /
    • 2021
  • This paper describes a wind tunnel test on a 1:25 scale model of TTU building with several adjustable openings in order to comprehensively study the characteristics of fluctuating internal pressures, especially the phenomenon of the increase in fluctuating internal pressures induced by tangential flow over building openings and the mechanism causing that. The effects of several factors, such as wind angle, turbulence intensity, opening location, opening size, opening shape and background porosity on the fluctuating internal pressures at oblique wind angles are also described. It has been found that there is a large increase in the fluctuating internal pressures at certain oblique wind angles (typically around 60° to 80°). These fluctuations are greater than those produced by the flow normal to the opening when the turbulence intensity is low. It is demonstrated that the internal pressure resonances induced by the external pressure fluctuations emanating from flapping shear layers on the sidewall downstream of the windward corner are responsible for the increase in the fluctuating internal pressures. Furthermore, the test results show that apart from the opening shape, all the other factors influence the fluctuating internal pressures and the internal pressure resonances at oblique wind angles to varying degrees.

유전알고리즘을 활용한 자원평준화 방법론 (Resource Leveling using Genetic Algorithm)

  • 곽한성;배상희;이동은
    • 대한건축학회논문집:구조계
    • /
    • 제34권2호
    • /
    • pp.67-74
    • /
    • 2018
  • Resource leveling minimizes resource fluctuations by deferring the earliest start times (ESTs) of non-critical activities within their corresponding total float. The intentional float-consumption for resource leveling purpose reduces the schedule delay contingency. This paper presents a method called Genetic Algorithm based Resource Leveling (GARL) that minimizes resource fluctuations and float-consumption impact over project duration. It identifies activities that are less sensitive to float-consumption and performs resource leveling using those activities. The study is of value to project scheduler because GARL identifies the set of activities to be deferred and the number of shift day(s) of each and every activities in the set within its total float expeditiously. It contributes to establish a baseline schedule which implements an optimal resource leveling plan. A case study is presented to verify the validity and usability of the method. It was confirmed that GARL satisfies the project duration constraint by considering resource fluctuations and float-consumption over project duration.

Circadian Biorhythmicity in Normal Pressure Hydrocephalus - A Case Series Report

  • Herbowski, Leszek
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권1호
    • /
    • pp.151-160
    • /
    • 2022
  • Continuous monitoring of intracranial pressure is a well established medical procedure. Still, little is known about long-term behavior of intracranial pressure in normal pressure hydrocephalus. The present study is designed to evaluate periodicity of intracranial pressure over long-time scales using intraventricular pressure monitoring in patients with normal pressure hydrocephalus. In addition, the circadian and diurnal patterns of blood pressure and body temperature in those patients are studied. Four patients, selected with "probable" normal pressure hydrocephalus, were monitored for several dozen hours. Intracranial pressure, blood pressure, and body temperature were recorded hourly. Autocorrelation functions were calculated and cross-correlation analysis were carried out to study all the time-series data. Autocorrelation results show that intracranial pressure, blood pressure, and body temperature values follow bimodal (positive and negative) curves over a day. The cross-correlation functions demonstrate causal relationships between intracranial pressure, blood pressure, and body temperature. The results show that long-term fluctuations in intracranial pressure exhibit cyclical patterns with periods of about 24 hours. Continuous intracranial pressure recording in "probable" normal pressure hydrocephalus patients reveals circadian fluctuations not related to the day and night cycle. These fluctuations are causally related to changes in blood pressure and body temperature. The present study reveals the complete loss of the diurnal blood pressure and body temperature rhythmicities in patients with "probable" normal pressure hydrocephalus.

덕유산 flux관측소의 군락 상층부와 지표면에서의 수분이동 관측 (Observation of Moisture Fluctuations in the Upper Canopy and the Ground Surface of Deogyusan-Flux)

  • 김용국;이부용
    • 한국환경과학회지
    • /
    • 제31권1호
    • /
    • pp.43-50
    • /
    • 2022
  • In this paper, lysimeter was installed to analyze the moisture fluctuations on the surface of a forest. The weight of the soil was measured, and the moisture fluctuations were calculated through the difference in weight over time. The amount of dew condensation on the surface of the ground was about 2-7 mm. January experienced the most dew condensation (7.2 mm). It was found that about 43 mm of dew condensation was generated over one year. To analyze the characteristics of evapotranspiration in the forest, the evapotranspiration on the surface was measured by the lysimeter method and the evapotranspiration on the upper part of the canopy was measured by the eddy covariance method. These results were compared and analyzed. Until mid-October, the evapotranspiration of the forest was active, and the amount of evapotranspiration on the top of the canopy was higher than the amount on the surface. Thereafter, the amount of evapotranspiration on the top of the canopy decreased due to the lowering of temperature and net-radiation. The amount of evapotranspiration on the surface and above the canopy showed the same tendency.

Accelerating Magnetic Resonance Fingerprinting Using Hybrid Deep Learning and Iterative Reconstruction

  • Cao, Peng;Cui, Di;Ming, Yanzhen;Vardhanabhuti, Varut;Lee, Elaine;Hui, Edward
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권4호
    • /
    • pp.293-299
    • /
    • 2021
  • Purpose: To accelerate magnetic resonance fingerprinting (MRF) by developing a flexible deep learning reconstruction method. Materials and Methods: Synthetic data were used to train a deep learning model. The trained model was then applied to MRF for different organs and diseases. Iterative reconstruction was performed outside the deep learning model, allowing a changeable encoding matrix, i.e., with flexibility of choice for image resolution, radiofrequency coil, k-space trajectory, and undersampling mask. In vivo experiments were performed on normal brain and prostate cancer volunteers to demonstrate the model performance and generalizability. Results: In 400-dynamics brain MRF, direct nonuniform Fourier transform caused a slight increase of random fluctuations on the T2 map. These fluctuations were reduced with the proposed method. In prostate MRF, the proposed method suppressed fluctuations on both T1 and T2 maps. Conclusion: The deep learning and iterative MRF reconstruction method described in this study was flexible with different acquisition settings such as radiofrequency coils. It is generalizable for different in vivo applications.

Feasibility and performance limitations of Supercritical carbon dioxide direct-cycle micro modular reactors in primary frequency control scenarios

  • Seongmin Son;Jeong Ik Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1254-1266
    • /
    • 2024
  • This study investigates the application of supercritical carbon dioxide (S-CO2) direct-cycle micro modular reactors (MMRs) in primary frequency control (PFC), which is a scenario characterized by significant load fluctuations that has received less attention compared to secondary load-following. Using a modified GAMMA + code and a deep neural network-based turbomachinery off-design model, the authors conducted an analysis to assess the behavior of the reactor core and fluid system under different PFC scenarios. The results indicate that the acceptable range for sudden relative electricity output (REO) fluctuations is approximately 20%p which aligns with the performance of combined-cycle gas turbines (CCGTs) and open-cycle gas turbines (OCGTs). In S-CO2 direct-cycle MMRs, the control of the core operates passively within the operational range by managing coolant density through inventory control. However, when PFC exceeds 35%p, system control failure is observed, suggesting the need for improved control strategies. These findings affirm the potential of S-CO2 direct-cycle MMRs in PFC operations, representing an advancement in the management of grid fluctuations while ensuring reliable and carbon-free power generation.