• Title/Summary/Keyword: flowing water

Search Result 808, Processing Time 0.023 seconds

A Study on the Mix Design and Quality Factors of the Combined High Flowing Concrete Using High Belite Cement

  • Kwon, Yeong-Ho
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.121-129
    • /
    • 2002
  • This study investigates experimentally into the design factors and quality variations having an effect on the properties of the combined high flowing concrete to be poured in the slurry wall of Inchon LNG in-ground receiving terminal. Especially, high belite cement and lime stone powder as cementitious materials and viscosity agent in order to improve self-compaction and hydration heat are used in this study. Water-cement ratio(W/C), fine aggregate volume ratio(Sr) and coarse aggregate volume ratio(Gv) as design factors of the combined high flowing concrete are applied to determine the optimum mix design proportion. Also quality variations for sensitivity test are selected items as followings. (1)Surface moisture(5cases) and (2)Fineness modulus of fine aggregate(5cases), (3)Concrete temperature(3cases), (4)Specific surface(3cases) and particle size of lime stone powder. As experimental results, water-cement ratio, fine and coarse aggregate volume ratio are shown as the optimum range 51%, 43% and 53% separately considering site condition of slurry wall. Also quality factors by sensitivity test should be controlled in the following ranges. (1) Surface moisture :to.67% and (2)Fineness modulus 2.6$\pm$0.2 of fine aggregate, (3)Concrete temperature l0-20t, (4) Specific surface 6,000$\textrm{cm}^2$/g and particle size 9.7$\pm$1.0${\mu}{\textrm}{m}$ of lime stone powder. Based on the results of this study, the optimum mix design proportion of the combined high flowing concrete are selected and poured successfully in the slurry wall of LNG in-ground tank.

  • PDF

Flow Characteristic of Artificial Upwelling by CFD (CFD를 이용한 인공용승류 특성 연구)

  • Lee, Hwang Ki;Kim, Jongkyu;Lee, Moon Ock;Kim, Hyeon-Ju;Otake, Shinya
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.6
    • /
    • pp.419-423
    • /
    • 2015
  • The flowing caused by artificial upwelling structure occurs ascending water flowing and vortex of rear side. In this moment, plentiful nutrient in the bottom water moves to the surface of the water and makes those plankton and fishing ecology promoted so that the fishing productivity can be enhanced. In this study, the changes of the upwelling flowing is included in consideration of the conditions of stratification by using CFD. In the conclusion, the closer upwelling effect is from the artificial upwelling structure, the better effectiveness comes out. Regardless of the conditions of stratification, only the upwelling feature from the bottom to the surface was shown up. But considering the conditions of stratification, the repeated flowing feature between upwelling and downwelling was verified.

Estimation of Baseflow Discharge through Several Streams in Jeju Island, Korea (제주도 주요하천의 기저유출량 산정)

  • Moon Duk-Chul;Yang Sung-Kee;Koh Gi-Won;Park Won-Bae
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.405-412
    • /
    • 2005
  • Groundwater in Jeju Island, flowing through main stream, is spring water from underground. To set a fixed quantity of groundwater flowing from surface in a hydrological view, 4 downstream (Woedo stream, Gangjung stream, Yeonwoe stream and Ongpo stream) were selected to calculate the characteristic of baseflow and the base-flow discharge through the data on tachometry. There were 11 to 14 level peak caused by runoff, mostly occurred during monsoon season. Also, duration of runoff was 15 to 25 hours, well reflecting the characteristic of inclined, short stream length in Jeju Island and pervious hydrogeographical feature. In case of Gangjung stream, Yeonwoe stream and Ongpo stream, variation of stream water level by baseflow rose above during summer, which was closely linked to the distribution of seasonal precipitation. From autumn to spring, water level fell below while that of Woedo stream remained the same all year round. Data on the water level observed in Woedo stream and Gangjung stream in every single minutes was applied to weir formula(equation of Oki and Govinda Rao) to calculate baseflow discharge. Also, using the data on current and water level calculated in Ongpo stream and Yeonwoe stream, water level-water flow rating was applied to assess base flow discharge.

The Selection of Optimal Mixing Proportion and Cost Analysis in the SFC (초유동 콘크리트의 최적배합 선정방법 및 경제성 분석)

  • Park, Chil-Lim;Kim, Moo-Han;Kwon, Yeong-Ho;Lee, Sang-Soo;Won, Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.262-268
    • /
    • 1998
  • This research is to examine the selected method of optimal mixing proportion and cost analysis in the super flowing concrete. As confined water $ratio($\beta_p$)$ and K is introduced, itis to establish optimal mixing design of super flowing concrete according to the steps of paste, mortar and concrete. From paste and mortar test, it was led to $$\beta_p$$ and $K_p$satisfying the optimum condions depending on the kinds of binders. Then $$\beta_p$$ and $K_p$ is reflected to the mix condition of super flowing concrete. The result of test, the mix condition of super flowing concrete satisfied the quality performance of concrete with adjustment of additional rate of the superplasticizer. Besides, in case of design strength $350kg/\textrm{cm}^2$ of concrete, material cost in super flowing concrete is able to be reduced 5~16% in replacement of fly ash 30% in ordinary portland cement and slag cement.

  • PDF

A Study on the Resistance to Sea Water and High Flowing Properties of Concrete Using Blended Low Heat Cement (혼합형 저발열 시멘트를 사용한 콘크리트의 초유동성 및 내해수성에 관한 연구)

  • 송용순;노재호;강석화
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.281-289
    • /
    • 1998
  • This study has been performed to test the flowability and filling ability of high flowing concrete as well as distribution of aggregate and pore of core specimen, heat of hydration, compressive strength and core strength of concrete. In addition, the resistance to chloride ion penetration and chemical solutionof concrete was tested in order to evaluate the resistance to sea water of concrete and its application of high flowing concrete using blended low heat cement in the field of Seohae Grand Bridge. The properties of high flowing concrete with blended low heat cement were compared with ordinary 25-240-15 concrete using Type V cement. As the results of this study, the flowability and filling ability of high flowing concrete with blended low heat cement is satisfied without vibration. Though the cement content of high flowing concrete with blended low heat cement was 400kg/m$^2$, the rising temperature of it was relatively lower than that of the ordinary 25-240-15 concrete with Type V cement. Also, the compressive of high flowing concrete with blended low heat cement is similar to that of the ordinary 25-240-15 concrete with Type V cement.

A Design for Ecological and Environmental Restoration of a Dispersal Detention System - a Case of Sustainable Structured wetland Biotop (SSB) System Applied to Ecological and Environmental Detention in the Housing District of Sinjeong 3-jigu - (분산형 저류지 생태환경복원 설계 - 신정3지구 생태환경저류지에 적용된 생태적수질정화비오톱(SSB)시스템을 중심으로 -)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.181-191
    • /
    • 2013
  • The design process of ecological and environmental detention system located in the housing district of Sinjeong 3-jigu in Seoul are as follows. At stage one, a new dispersal detention was created in the neighborhood park located near the originally planned detention. From this, the amount of storage of this dispersal detention system was enlarged from $28,337m^3/d$, the initial storage amount, to $33,606m^3/d$ as the post storage amount, responsible to the amount of rainfall which happens every 100 years. In particular, the SSB (Sustainable Structured wetland Biotop) system, which was the New Excellent Technology verified by the Ministry of Environment (No. 258) was applied to enhance ecological functioning and water quality with the detention as a constructed wetland. At stage two, the treatment plans for non-point pollutant source occurred at the initial period of rain, flowing into the detention system were built for purifying the water of the retention pond at the base of the detentions, and the water-circulation system was designed at the dispersal detentions on the period of regular rainfalls. The non-point pollutant source flowing into detention site was calculated as $11,699m^3/d$ flowing down from seven small watersheds, which occurred at the initial period of rain. In particular the SSB systems improved the average efficiency of the water processing performance to BOD 60%, SS 90%, T-N 30%, T-P 60%. At stage three, the ecological network and biological diversity were strongly considered so that it brought the residents with amenity places. In particular, the dispersal detentions were successfully designed to restore the ecological habitat of endangered plant and animal species such as narrow-mouthed.

The Flow Variation due to Pier Construction at Kwangyang Bay (컨테이너 부두건설에 따른 광양만의 유황변동)

  • Choi, Song Yeol;Cho, Won Cheol;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.115-125
    • /
    • 1992
  • The variation of flow pattern caused by the topographical change of Kwangyang bay, is analyzed using the numerical tidal model for the depth-integrated two- dimensional long wave equation. The results of study are as follows. Due to pier construction, the area of water surface is deceased and the water inflow into the Kwangyang bay is reduced. For this result, at the outer bay of Myo island, the tidal range is slightly increased. And at the inner bay, water level is dropped generally, and especially at the time of low water tide, the phenomena of water level drop obviously appears. According to the variation pattern, flow velocities is lower than those of non-construction condition over the Kwangyang bay. But at the channel(from Kwangyang east stream) flowing into the east Kwangyang bay, for the contraction of channel profile, flow velocity is increased. The study based on the 100 year frequency design flood discharge from Sueocheon(river) and Dongcheon(river) which are flowing into the bay and Seomjin River flowing along the boundary of the bay is also performed. During the spring tide condition, the results showed the rise of water level about 1.2 m at Seomjin River Estuary and 0.3 m at inner bay is occurred.

  • PDF

A Study on Model Test for Spilway of Fill Dam (Fill Dam의 방수로모형실험에 관한 고찰)

  • 강병익
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.4
    • /
    • pp.2090-2123
    • /
    • 1970
  • This paper is a report on the research of experimental model test of Andong Fill Dam, which has been planned by the Government of Korea as a project, of its over-flowing capacity in spillway, creation of minus pressure and structure of anti-water impulse in over-flow weir. Andong Fill Dam is one of the project of master development plant for water resources, locating at Nakdong River side of Korea, and is aimed to have a multi-purpose dam for flood-control, irrigation, water power, urban and industrial water supply. This dam is planned to erect in fill-dam type due to the improper soil foundation and condition for concrete dam. The refore for the proper and advantageous points, this is designed as center core fill dam. By a model minimized of Andong Fill Dam, held an experimental model test on water quentity of reservir, discharges of overflow part, low pressure and anti-water impulse of overflow part, which was conducted an experiment by flowing aspects through each section of spillway to find the changes of water pressure and that of water level, and corrected the section of each part in order to conduct a check on the creation of minus pressure not to be over acted to the allowable bundary of the section structure; and for the prevention of concentated scouring at the down stream side of flow.

  • PDF

An Experimental Study on the Engineering Properties of High Strength Flowing Concrete Using Flyash and Silicafume (Part I. Workability of Fresh Concrete) (플라이애시 및 실리카흄을 사용한 고강도유동화콘크리트의 공학적 특성에 관한 실험적 연구 (제1보, 아직 굳지않은 콘크리트의 시공성 검토))

  • 김진만;이상수;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.161-166
    • /
    • 1994
  • Production of high strength concrete requires a low water-cement ratio and this leads to the high cement content. Mineral admixture like fly ash(FA) is often cheaper than ordinary portland cement(OPC) and this factor in combination with possible improvement in workability and moderation of the heat evolution of the cement-rich mixes tends to encourage its use. The other mineral admixture that its use has been widly advocated is silica fume that increases compressive strength due to its pozzolanic reaction. The objective of this study is to assess the contribution of mineral admixtures(FA, SF) to the workability and the strength of concrete with low water-binder ratios. In this experimental study that investigates and analyzes the properties of fresh concrete, it is presented that using admixtures like flysh and silica fume as binding material increases properties of high strength flowing concrete having very low water cementitious ratios of 0.25 and 0.30.

  • PDF