• 제목/요약/키워드: flow-induced mixing

검색결과 103건 처리시간 0.022초

다중 와류 유동을 이용한 자기유체역학 (MHD) 마이크로 믹서 (Magnetohydrodynamic (MHD) Micromixer Using Multi-Vortical Flow)

  • 양원석;김동성
    • 대한기계학회논문집B
    • /
    • 제34권1호
    • /
    • pp.53-59
    • /
    • 2010
  • 본 논문에서는, 자기유체역학(MHD)을 기반으로 마이크로 채널 내부에 다중 와류 유동을 발생시키는 새로운 형태의 카오스 마이크로 믹서를 제안한다. 제안된 마이크로 믹서의 마이크로 채널 내부에는 양측면과 바닥면에 전극들이 배치되어 있다. 배치된 전극들에 인가되는 전압 조건에 따라 다양한 형태로 로렌츠 힘이 유도되며, 이렇게 유도된 로렌츠 힘은 마이크로 채널 내부 유체의 추진 및 혼합을 야기할 수 있다. 제안된 MHD 마이크로 믹서의 혼합 양상을 평가하기 위해 3 차원 전산유체역학 시뮬레이션을 수행하였다. 이를 통해 다양한 유동 조건에 대해 MHD 마이크로 믹서의 혼합 성능을 평가하였다.

초음파 미세혼합기의 해석 및 설계 (Analysis and Design of Ultrasonic Micromixer)

  • 김덕종;허필우;박상진;김재윤;윤의수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.101-106
    • /
    • 2003
  • In this work, mixing phenomena in the mixing chamber of a ultrasonic micromixer are analyzed through an analytical approach. A simplified 2-dimensional model for the ultrasonic micromixer is presented. Analytical solutions for fluid flow induced by ultrasonic waves are obtained through successive approximations method. From simulation results on thermal diffusion in the mixing chamber, effects of relative location, size, and vibration frequency of a piezoelectric material and aspect ratio of the mixing chamber on mixing performance of the ultrasonic micromixer are investigated. Finally, design guidelines for the ultrasonic micromixer are suggested based on the parametric study.

  • PDF

사출 성형된 일회용 카오스 마이크로 믹서의 개발: 나선형 라미네이션 마이크로 믹서 (I) - 디자인 및 수치 해석 - (Development of an Injection Molded Disposable Chaotic Micromixer: Serpentine Laminating Micromixer (I) - Design and Numerical Analysis -)

  • 김동성;이세환;권태헌
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1289-1297
    • /
    • 2005
  • The flow in a microchannel is usually characterized as a low Reynolds number (Re) so that good mixing is quite difficult to be achieved. In this regard, we developed a novel chaotic micromixer, named Serpentine Laminating Micromixer (SLM) in the present study, Part 1. In the SLM, the higher level of chaotic mixing can be achieved by combining two general chaotic mixing mechanisms: splitting/recombination and chaotic advection. The splitting and recombination (in other term, lamination) mechanism is obtained by the successive arrangement of 'F'-shape mixing units in two layers. The chaotic advection is induced by the overall three-dimensional serpentine path of the microchannel. Chaotic mixing performance of the SLM was fully characterized numerically. To compare the mixing performance, a T-type micromixer which has the same width, height and length of the SLM was also designed. The three-dimensional numerical mixing simulations show the superiority of the SLM over the T-type micromixer. From the cross-sectional simulation results of mixing patterns, the chaotic advection effect from the serpentine channel path design acts favorably to realize the ideal lamination of fluid flow as Re increases. Chaotic mixing mechanism, proposed in this study, could be easily integrated in Micro-Total-Analysis-System, Lab-on-a-Chip and so on.

CFD ANALYSIS OF TURBULENT JET BEHAVIOR INDUCED BY A STEAM JET DISCHARGED THROUGH A VERTICAL UPWARD SINGLE HOLE IN A SUBCOOLED WATER POOL

  • Kang, Hyung-Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • 제42권4호
    • /
    • pp.382-393
    • /
    • 2010
  • Thermal mixing by steam jets in a pool is dominantly influenced by a turbulent water jet generated by the condensing steam jets, and the proper prediction of this turbulent jet behavior is critical for the pool mixing analysis. A turbulent jet flow induced by a steam jet discharged through a vertical upward single hole into a subcooled water pool was subjected to computational fluid dynamics (CFD) analysis. Based on the small-scale test data derived under a horizontal steam discharging condition, this analysis was performed to validate a CFD method of analysis previously developed for condensing jet-induced pool mixing phenomena. In previous validation work, the CFD results and the test data for a limited range of radial and axial directions were compared in terms of profiles of the turbulent jet velocity and temperature. Furthermore, the behavior of the turbulent jet induced by the steam jet through a horizontal single hole in a subcooled water pool failed to show the exact axisymmetric flow pattern with regards to an overall pool mixing, whereas the CFD analysis was done with an axisymmetric grid model. Therefore, another new small-scale test was conducted under a vertical upward steam discharging condition. The purpose of this test was to generate the velocity and temperature profiles of the turbulent jet by expanding the measurement ranges from the jet center to a location at about 5% of $U_m$ and 10 cm to 30 cm from the exit of the discharge nozzle. The results of the new CFD analysis show that the recommended CFD model of the high turbulent intensity of 40% for the turbulent jet and the fine mesh grid model can accurately predict the test results within an error rate of about 10%. In this work, the turbulent jet model, which is used to simply predict the temperature and velocity profiles along the axial and radial directions by means of the empirical correlations and Tollmien's theory was improved on the basis of the new test data. The results validate the CFD model of analysis. Furthermore, the turbulent jet model developed in this study can be used to analyze pool thermal mixing when an ellipsoidal steam jet is discharged under a high steam mass flux in a subcooled water pool.

3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구 (Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method)

  • 김채형;정인석;최병일;토시노리 코오치;고로 마쓰야
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.378-385
    • /
    • 2012
  • 벤트 혼합기는 혼합기 후류에 존재하는 재순환 영역으로 공기를 유입시켜 연료-공기 혼합을 증대시키는 혼합기이다. Stereoscopic PIV기법을 통해 얻은 3차원 속도, 와류, 난류운동에너지를 토대로 계단형 혼합기를 기본 모델로 하여 벤트 혼합기의 성능을 분석하였다. 벤트 혼합기는 두터운 전단층으로 인해 높은 침투거리를 보였으며, 난류운동에너지는 주로 주유동과 제트유동의 경계면을 따라 분포하였다. 이 난류 영역은 혼합영역 내에서 활발히 물질전달을 일으키며, 혼합 증대를 가져온다.

  • PDF

대형 와 모사를 사용한 혼합 탱크 내의 농도장과 유동장의 동시 해석 (Simultaneous Analysis of Concentration and Flow Fields in A Stirred Tank Using Large Eddy Simulation)

  • 윤현식;전호환;하만영
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1282-1289
    • /
    • 2003
  • Transport of a scalar quantity, such as chemical concentration or temperature, is important in many engineering applications and environmental flows. Here we report on results obtained from the large eddy simulations of flow and concentration fields inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius (Yoon et al.). This study focused on the concentration development at different molecular diffusivities in a stirred tank operated under turbulent conditions. The main objective of the work presented here is to study the large-scale mixing structure at different molecular diffusivities in a stirred tank by using the large eddy simulation. The time sequence of concentration and flow fields shows the flow dependency of the concentration development. The presence of spatial inhomogenieties is detailed by observing the time variation oflocal concentration at different positions.

Transient Response of a Stratified Thermal Storage Tank to the Variation of Inlet Temperature

  • Yoo, Ho-Seon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제6권
    • /
    • pp.14-26
    • /
    • 1998
  • This paper deals with approximate analytical solutions for the two-region one-dimensional model describing the charging process of stratified thermal storage tanks at variable inlet temperature with momentum-induced mixing. An arbitrarily increasing inlet temperature is decomposed into inherent step changes and intervals of continuous change. Each continuous interval is approximated as a finite number of piecewise linear functions, which admits an analytical solution for perfectly mixed region. Using the Laplace transform, the temperature profiles in plug flow region with both the semi-infinite and adiabatic ends are successfully derived in terms of well-defined functions. The effect of end condition on the solution proves to be negligible under the practical operating conditions. For a Quadratic variation of inlet temperature, the approximate solution employing a moderate number of pieces agrees excellently with the exact solution.

  • PDF

PIV measurement and numerical investigation on flow characteristics of simulated fast reactor fuel subassembly

  • Zhang, Cheng;Ju, Haoran;Zhang, Dalin;Wu, Shuijin;Xu, Yijun;Wu, Yingwei;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.897-907
    • /
    • 2020
  • The flow characteristics of reactor fuel assembly always intrigue the designers and the experimentalists among the myriad phenomena that occur simultaneously in a nuclear core. In this work, the visual experimental method has been developed on the basis of refraction index matching (RIM) and particle image velocimetry (PIV) techniques to investigate the detailed flow characteristics in China fast reactor fuel subassembly. A 7-rod bundle of simulated fuel subassembly was fabricated for fine examination of flow characteristics in different subchannels. The experiments were performed at condition of Re=6500 (axial bulk velocity 1.6 m/s) and the fluid medium was maintained at 30℃ and 1.0 bar during operation. As for results, axial and lateral flow features were observed. It is shown that the spiral wire has an inhibitory effect on axial flow and significant intensity of lateral flow mixing effect is induced by the wire. The root mean square (RMS) of lateral velocity fluctuation was acquired after data processing, which indicates the strong turbulence characteristics in different flow subchannels.

준 능동형 로터를 이용한 마이크로 혼합기의 제작 및 혼합특성 (Fabrication and Mixing Characteristics of a Micro-Mixer with a Quasi-Active Rotor)

  • 김용대;이종광;권세진
    • 대한기계학회논문집A
    • /
    • 제33권4호
    • /
    • pp.417-424
    • /
    • 2009
  • A micro-mixer with a quasi-active rotor was fabricated, and mixing characteristics were evaluated. The proposed micro-mixer combines an active type micro-mixer with a passive type micro-mixer. The micro-rotor, which is a moving part of an active type micro-mixer, is added in a micro-chamber of a passive type vortex micro-mixer. The rotor rotated by inflows tangent to a chamber, causing strong perturbations. The micro-mixers were fabricated using photosensitive glass. Mixing efficiency of the micro-mixers was measured using an image analysis method. Mixing efficiency and characteristics of the micro-rotor mixer were compared with the vortex micro-mixer without a rotor. Mixing efficiency was reduced as Reynolds number increased at a low Reynolds number due to decrease of residence time. Mixing efficiency at higher Reynolds number, on the other hand, was improved even though residence time decreased since the contact surface between fluids increased by twisted flow. The perturbation induced by rotating rotor at greater than Re 200 improved the efficiency of the rotor mixer.

수직상향 기체 주입에 따른 기포 및 액상의 유동분석 (Flow Analysis of Bubble and Liquid Phase by Vertical Upward Gas Injection)

  • 서동표;오율권
    • 설비공학논문집
    • /
    • 제15권9호
    • /
    • pp.727-732
    • /
    • 2003
  • In the present study, a PIV measurement and image processing technique were applied in order to investigate the flow characteristics in the gas injected liquid bath. The circulation of liquid was induced by upward bubble flow. Due to the centrifugal force, the flow was well developed near both wall sides than in the center of a bath. The vortex flow irregularly repeated generation and disappearance which helped to accelerate the mixing process. The bubble rise velocity in the bottom region was relatively lower than in the upper region because the energy generated by bubbles' behavior in the region near the nozzle was almost converted into kinetic energy But bubble rise velocity increases with the increase of the axial distance since kinetic energy of rising bubbles is added to buoyancy force. In conclusion, the flow increased bubble rise velocity and the flow of the bottom region became more active.