• 제목/요약/키워드: flow-induced mixing

검색결과 103건 처리시간 0.024초

Reactive Fields Analysis of Hybrid Combustor Under Different Arrangements of Oxidizer Injectors (하이브리드 연소기의 산화제 주입기 배열 특성에 따른 반응유동장 해석)

  • Cho Sung-Chan;Kim Soo-Jong;Lee Seung-Chul;Kim Jin-Kon;Koo Ja-Yae;Moon Hee-Jang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제9권2호
    • /
    • pp.78-88
    • /
    • 2005
  • The combustion characteristics of End-Burning hybrid combustor using different types of injector system are numerically investigated to visualize the temperature fields in the combustion chamber The basic characteristics of combustion with different O/F ratio is also analyzed in order to capture the main behavior of diffusion flame inside the swirl induced hybrid combustion chamber It was found that the arrangement of oxidizer injectors give strong effect on the temperature field dominating mixing between fuel and oxidizer. The results show that among five different oxidizer injectors arrangement, the counter flow injector has the highest mixing efficiency. However, the observed high wall temperature presence near the oxidizer injectors remains to be solved.

Influence of Water Supply Withdrawal on the River Flow and Water Quality (하천취수가 하천흐름 및 수질에 미치는 영향)

  • Seo, Il Won;Song, Chang Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제31권4B호
    • /
    • pp.343-352
    • /
    • 2011
  • The water quantity by intake station as well as the tributary flow discharge acting as sink or source were added to the main flow rate in the present study and RMA-2 and RMA-4 models were applied to the reach from Pal-dang dam to Jam-sil submerged weir to investigate the influence of water supply withdrawal on the river flow and water quality. The numerical results revealed that the water supply withdrawal from 5 intake stations located upstream of Jam-sil submerged weir changed the total flow rate and therby induced different hydraulic characteristics in terms of water surface elevation and velocity. The changed flow field by the inclusion of water intake quantity led to the variation of water quality. By the consideration of the water supply withdrawal, the velocity structure was significantly disturbed by the outflowing flow condition nearby Gu-ui, Ja-yang, and Pung-nap intake stations. Furthermore, the mean velocity was lowered by 25% and the stage upstream of Gu-ui station rose upto 1.5 cm compared with the result by exclusion of water intake. In case of no water withdrawal, the distribution of BOD concentration was parallel throughout the domain. However, when the water withdrawal is considered, the distribution of BOD concentration nearby the Gu-ui, Am-sa, and Ja-yang station was signifiantly changed. In addition, the BOD concentration including the intake stations showed higher value at the downstream of the reach due to the loss of the discharge by water withdrawal effect. It is concluded that both the inflow and outflow discharges from tributaries and water intake stations should be included in the numerical simulation to analyze the hydrodynamic behaviors and mixing characteristics more accurately.

Adhesive Strength in Tension of High Volume PAE-Modified Cement Mortar with High Flowability for Floor Finishing

  • Do, Jeong-Yun;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • 제15권5호
    • /
    • pp.739-746
    • /
    • 2003
  • Various researches on the application of polymer dispersions to the cement mortar and concrete have been carried out in many countries like America, Japan and Germany and so on due to their high performance and good modification effect. PAE of polymer dispersion widely used in situ was employed that the high flowability may be induced in the cement mortar. In order to investigate the modification of cement mortar with high flowability by PAE and fracture mode of adhesive strength properties in tension of that, experimental parameters were set as PAE solid-cement ratio(P/C) and cement: fine aggregate(C:F) and the experiments such as unit weight, flow, consistency change, crack resistance and segregation that inform on the general properties have been done. Adhesion in tension is measured with a view to comprehending the properties and fracture mode in tensile load. Consistency change of cement mortar modified by PAE did grow better as the ratio of PAE solid-cement increased and was much superior to that of resin based flooring such as polyurethane and epoxy which recorded the loss of consistency in 90 min. after mixing. Adhesive strength in tension increased with continuity during curing period and showed the maximum in case of C:F=1:1 and P/C=20%.

Air Quality Modeling of Ozone Concentration According to the Roughness Length on the Complex Terrain (복잡지형에서의 지표면 거칠기에 따른 오존 농도 수치모의)

  • Choi, Hyun-Jung;Lee, Hwa-Woon;Sung, Kyoung-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제23권4호
    • /
    • pp.430-439
    • /
    • 2007
  • The objective of this work is the air quality modeling according to the practical roughness length using the building information as surface boundary conditions. As accurate wind and temperature field are required to produce realistic urban air quality modeling, comparative simulations by various roughness length are discussed. The prognostic meteorological fields and air quality field over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model (MM5) and the Third Generation Community Multi-scale Air Quality Modeling System (Models-3/CMAQ), respectively. The simulated $O_3$ concentration on complex terrain and their interactions with the weak synoptic flow had relatively strong effects by the roughness length. A comparison of the three meteorological fields of respective roughness length reveals substantial localized differences in surface temperature and wind folds. Under these conditions, the ascended mixing height and weakened wind speed at night which induced the stable boundary stronger, and the difference of simulated $O_3$ concentration is $2{\sim}6\;ppb$.

A Numerical Study on the Combustion Characteristics for Stoker Type Incinerator with Various Injection Type of Secondary Air (2차 공기 주입방식에 따른 스토커형 소각로의 연소특성에 관한 수치해석적 연구)

  • Jung, Jin;Kim, Chang-Nyeong;Cho, Young-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제15권10호
    • /
    • pp.835-842
    • /
    • 2003
  • A three dimensional numerical analysis has been conducted for a stoker type incinerator which has the capacity of 1.5 ton/hr. The objective of the present study is to predict the effects of swirl induced by secondary air and to find an optimal operating condition of the incinerator. In this study, combustion characteristics such as distributions of temperature, velocity and concentration of each species have been examined with various injection types of secondary air and with different flow rates of secondary air in the incinerator. It is found that the secondary air injection on the combustion process makes the path of fluid particle longer in the combustor and enhances the mixing between air and combustion gas by arousing a swirl. Therefore, the injection type of secondary air can be an important key in the design process of incinerator.

Factors affecting nitrite build-up in an intermittently decanted extended aeration process for wastewater treatment (하수처리를 위한 간헐 방류식 장기폭기 공정에서 아질산염의 축적에 영향을 미치는 인자)

  • Ahn, Kyu-Hong;Park, Ki-Young;Lee, Hyung-Jib
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제13권1호
    • /
    • pp.51-60
    • /
    • 1999
  • An intermittently-aerated, intermittently-decanted single-reactor process (KIDEA process : KIST intermittently decanted extended aeration process) was applied for nitrogen removal from wastewater. Synthetic wastewater with chemical oxygen demand (COD): nitrogen (N) ratio of approximately 5.25: 1 was used. The average COD removal efficiency reached above 95%, and under optimal conditions nitrogen removal efficiency also reached above 90%. This process consisted of 72 minute aeration, 48 minute settling and 24 minute effluent decanting with continuous feeding of influent wastewater from the bottom of the reactor, and did not require a separate anoxic mixing-phase. In this process, nitritation ($1^{st}$ step of nitrification) was induced but nitratation($2^{nd}$ step of nitrification) was suppressed. Main factors responsible for the accumulation of nitrite ion in the experimental condition were free ammonium and dissolved oxygen. This condition of nitrite build-up accelerated by continuous feed flow in the bottom of the KIDEA reactor because of high concentration of ammonia nitrogen in the influent. This research provides one of answers to control nitrate build-up.

  • PDF

A study on the effect of agitation speeds for the optimization of manufacturing process of autonomic microcapsules (자가치료용 마이크로캡슐 제조공정 최적화를 위한 교반속도 영향 연구)

  • Yun, Seong-Ho;Kim, Sang-Deok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제34권3호
    • /
    • pp.51-59
    • /
    • 2006
  • The physical characteristics of autonomic microcapsules manufactured with various agitation speeds in a stirred tank were observed experimentally by a particle size analyzer and an optical microscope. The flow characteristics in a stirred tank were also investigated through a 3-dimensional numerical simulation to understand the manufacturing process of autonomic microcapsules. According to the results, we found that the agitation speed was the important factor to determine the sizes of microcapsules. The impeller-induced flow allowed the jet and tip-vortex pair components in the mixed fluid of a stirred tank. The vorticity around the blades in the impeller was increased as increasing the agitation speed. In addition, the size of autonomic microcapsules was strongly affected on the small scale mixing pattern such as a tip-vortex pair.

Flow-induced pressure fluctuations of a moderate Reynolds number jet interacting with a tangential flat plate

  • Marco, Alessandro Di;Mancinelli, Matteo;Camussi, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.243-257
    • /
    • 2016
  • The increase of air traffic volume has brought an increasing amount of issues related to carbon and NOx emissions and noise pollution. Aircraft manufacturers are concentrating their efforts to develop technologies to increase aircraft efficiency and consequently to reduce pollutant discharge and noise emission. Ultra High By-Pass Ratio engine concepts provide reduction of fuel consumption and noise emission thanks to a decrease of the jet velocity exhausting from the engine nozzles. In order to keep same thrust, mass flow and therefore section of fan/nacelle diameter should be increased to compensate velocity reduction. Such feature will lead to close-coupled architectures for engine installation under the wing. A strong jet-wing interaction resulting in a change of turbulent mixing in the aeroacoustic field as well as noise enhancement due to reflection phenomena are therefore expected. On the other hand, pressure fluctuations on the wing as well as on the fuselage represent the forcing loads, which stress panels causing vibrations. Some of these vibrations are re-emitted in the aeroacoustic field as vibration noise, some of them are transmitted in the cockpit as interior noise. In the present work, the interaction between a jet and wing or fuselage is reproduced by a flat surface tangential to an incompressible jet at different radial distances from the nozzle axis. The change in the aerodynamic field due to the presence of the rigid plate was studied by hot wire anemometric measurements, which provided a characterization of mean and fluctuating velocity fields in the jet plume. Pressure fluctuations acting on the flat plate were studied by cavity-mounted microphones which provided point-wise measurements in stream-wise and spanwise directions. Statistical description of velocity and wall pressure fields are determined in terms of Fourier-domain quantities. Scaling laws for pressure auto-spectra and coherence functions are also presented.

Apoptosis Induced by BARODON® in Human Gastric Cancer Cells (BARODON® 에 의한 Human Gastric Adenocarcinoma AGS 세포고사)

  • Jo Eun-Hye;Choi Soo-Il;Kim Soo-Rim;Cho Sung-Dae;Ahn Nam-Shic;Jung Ji-Won;Yang Se-Ran;Park Joon-Suk;Hwang Jae-Woong;Park Yong-Ho;Lee Yong-Soon;Kang Kyung-Sun
    • Toxicological Research
    • /
    • 제21권2호
    • /
    • pp.107-113
    • /
    • 2005
  • [ $BARODON^{(R)}$ ] is a multi-purpose, high functional alkali solution made by mixing and liquid-ionizing silicon, calcium, sodium, borax, organic carbon chemicals and silver. In this study, we have investigated the apoptotic potential and mechanistic insights of $BARODON^{(R)}$ in human gastric cancer cell line (AGS cells). In MTT assay, $BARODON^{(R)}$ reduced cell viability in AGS cells. Morphological features of apoptosis with marked cytoplasmic vacuolation and appearance of apoptotic peaks in flow cytometry were observed in AGS cells with$BARODON^{(R)}$ treatment. In addition, $BARODON^{(R)}$ induced apoptosis of stomach cancer cell is related to bax up-regulation, caspase 7 protease activation and subsequent cleavage of poly (ADP-ribose) polymerase (PARP). These results suggest that BARODON can induce the apoptosis of AGS cells through modulation of bcl-2 family and the activation of intrinsic caspase cascades, indicating that it is potentially useful as a anti-cancer agent.

Adhesive Strength in Tension of SBR-Modified Cement Mortar with Self-Flowability Material for Floor-Finishing (자기 평활성 바닥 마감용 SBR 시멘트 모르타르의 인장부착강도)

  • Do, Jeong-Yun;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • 제15권4호
    • /
    • pp.549-556
    • /
    • 2003
  • Various researches on the application of polymer dispersions to the cement mortar and concrete have been practised in many countries like America, Japan and Germany and so on because of high performance and good modification effect of these. In this study, SBR, Polymer dispersion that widely used in situ is employed that the self-flowability may be induced in the cemen mortar. In order to comprehend and investigate the modification of cement mortar with self-flowability by SBR and properties and fracture mode of adhesive strength in tension of that, experimental parameter was set as SBR solid-Cement ratio(S/C) and Cement:Fine aggregate(C:F) and the experiments such as Unit weight, Flow, Consistency change, Crack resistance and Segregation that inform on the general properties have been done. In addition of that, Adhesion in tension is measured with a view to comprehending the properties and fracture mode in tensile load. Consistency change of cement mortar modified by SBR did grow better as the ratio of SBR solid-Cement increased and was much superior to that of resin based flooring such as polyurethane and epoxy which recorded the loss of consistency in 90min. after mixing. Adhesive strength in tension increased with continuity in the curing age and showed the maximum in case of C:F=1:1 and S/C=20%. As the increase of curing age, the fracture mainly happened in the concrete substrate and the interface between the specimen and concrete substrate.