• Title/Summary/Keyword: flow transition

Search Result 867, Processing Time 0.03 seconds

Saccharification of lignocellulosics by Supercritical Water (초임계수를 이용한 목질바이오매스의 당화 특성)

  • Choi, Joon-Weon;Lim, Hyun-Jin;Jo, Tae-Su;Han, Gyu-Sung;Choi, Don-Ha
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.38-45
    • /
    • 2007
  • To characterize thermo-chemical feature of sugar conversion of woody biomass, poplar wood ($Populus\;alba{\times}glandulosa$) powder was treated with supercritical water system. Supercritical water treatment (SCWT) was performed for 60 seconds at different temperatures (subcritical zone 350; supercritical zone $300,\;400,\;425^{\circ}C$) under two pressures $230{\pm}10atm$ as well as $330{\pm}10atm$, respectively, using flow type system. After separation of solid residues from SCWT products, the monomeric sugars in aqueous part converted from poplar wood powder were quantitatively determined by high performance anionic exchange chromatography [HPAEC] equipped with PAD detector and Carbo Pac PA10 column. As the temperature treated increased, the degradation of poplar wood powder was enhanced and ca 83% of woody biomass was dissolved into the water at $425^{\circ}C$. However, the pressure didn't help the degradation of biomass components. At subcritical temperature range, xylose was first formed by degradation of xylan, which is main hemicellulose component in hardwood species, while cellulose degradation started at the transition zone between sub and supercritical conditions and was remarkably accelerated at the supercritical temperature. In the supercritical water system the maximum yield of monomeric sugars amounts to ca. 7.3% based on oven dried wood weight at $425^{\circ}C$.

  • PDF

Theoretical solutions for displacement and stress of a circular opening reinforced by grouted rock bolt

  • Zou, Jin-Feng;Xia, Zhang-Qi;Dan, Han-Cheng
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.439-455
    • /
    • 2016
  • This paper presented solutions of displacement and stress for a circular opening which is reinforced with grouted rock bolt. It satisfies the Mohr-Coulomb (M-C) or generalized Hoek-Brown (H-B) failure criterion, and exhibits elastic-brittle-plastic or strain-softening behavior. The numerical stepwise produce for strain-softening rock mass reinforced with grouted rock bolt was developed with non-associative flow rules and two segments piecewise linear functions related to a principle strain-dependent plastic parameter, to model the transition from peak to residual strength. Three models of the interaction mechanism between grouted rock bolt and surrounding rock proposed by Fahimifar and Soroush (2005) were adopted. Based on the axial symmetrical plane strain assumption, the theoretical solution of the displacement and stress were proposed for a circular tunnel excavated in elastic-brittle-plastic and strain-softening rock mass compatible with M-C or generalized H-B failure criterion, which is reinforced with grouted rock bolt. It showed that Fahimifar and Soroush's (2005) solution is a special case of the proposed solution for n = 0.5. Further, the proposed method is validated through example comparison calculated by MATLAB programming. Meanwhile, some particular examples for M-C or generalized H-B failure criterion have been conducted, and parametric studies were carried out to highlight the influence of different parameters (e.g., the very good, average and very poor rock mass). The results showed that, stress field in plastic region of surrounding rock with considering the supporting effectiveness of the grouted rock bolt is more than that without considering the effectiveness of the grouted rock bolt, and the convergence and plastic radius are reduced.

3D Numerical Simulation of Ice Accretion on a Rotating Surface

  • Mu, Zuodong;Lin, Guiping;Bai, Lizhan;Shen, Xiaobin;Bu, Xueqin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.352-364
    • /
    • 2017
  • A novel 3D mathematical model for water film runback and icing on a rotating surface is established in this work, where both inertial forces caused by the rotation and shear forces due to the air flow are taken into account. The mathematical model of the water film runback and energy conservation of phase transition process is established, with a cyclical average method applied to simulate the unsteady parameters variation at angles of attack. Ice accretion on a conical spinner surface is simulated and the results are compared with the experimental data to validate the presented model. Then Ice accretion on a cowling surface is numerically investigated. Results show that a higher temperature would correspond to a larger runback ice area and thinner ice layer for glaze ice. Rotation would enhance the icing process, while it would not significantly affect the droplet collection efficiency for an axi-symmetric surface. In the case at angle of attack, the effect of rotation on ice shape is appreciable, ice would present a symmetric shape, while in a stationary case the shape is asymmetric.

Response of Ecosystem Carbon and Water Vapor Exchanges in Evolving Nocturnal Low-Level Jets

  • Hong, Jin-Kyu;Mathieu, Nathalie;Strachan, Ian B.;Pattey, Elizabeth;Leclerc, Monique Y.
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.3
    • /
    • pp.222-233
    • /
    • 2012
  • The nocturnal low-level jet makes a significant impact on carbon and water exchanges and turbulent mixing processes in the atmospheric boundary layer. This study reports a case study of nocturnal surface fluxes such as $CO_2$ and water vapor in the surface layer observed at a flat and homogeneous site in the presence of low-level jets (LLJs). In particular, it documents the temporal evolution of the overlying jets and the coincident response of surface fluxes. The present study highlights several factors linking the evolution of low-level jets to surface fluxes: 1) wavelet analysis shows that turbulent fluxes have similar time scales with temporal scale of LLJ evolution; 2) turbulent mixing is enhanced during the transition period of low-level jets; and 3) $CO_2$, water vapor and heat show dissimilarity from momentum during the period. We also found that LLJ activity is related not only to turbulent motions but also to the divergence of mean flow. An examination of scalar profiles and turbulence data reveal that LLJs transport $CO_2$ and water vapor by advection in the stable boundary layer, suggesting that surface fluxes obtained from the micrometeorological method such as nocturnal boundary layer budget technique should carefully interpreted in the presence of LLJs.

Cure Behavior, Thermal Stability and Flexural Properties of Unsaturated Polyester/Vinyl Ester Blends (불포화 폴리에스터/비닐에스터 블렌드의 경화 거동, 열안정성 및 굴곡 특성)

  • 이종문;조동환
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.120-128
    • /
    • 2003
  • The effects of catalyst, accelerator and blend composition on the cure behavior of unsaturated polyester resin (UPE), vinyl ester resin (VE) and their blends were studied using differential scanning calorimetry(DSC). The DSC thermograms strongly depend on each variable. The result shows that the small exothermic peak at 115$^{\circ}C$ is due mainly to the UPE component in the UPE/VE blends and the large one at 134~138 $^{\circ}C$ is due mainly to the VE component. The results also indicate that the change of the DSC thermogram measured after each blend was exposed to high temperature 18$0^{\circ}C$ and the fast curing conditions of a few tens seconds provide useful information on understanding the thermal processing of a blend at high speed. The measurements of resin flow time represent that there are three distinct stages of cure in the UPE/VE blends: induction, transition and macro-gelation stages, as similarly reported for UPE by others earlier. The thermal stability and flexural properties of the cured UPE are significantly improved by blending it with the VE, depending on the composition.

Study on the Buzz Characteristics of Supersonic Air Intake at Mach 2.5 (마하 2.5 초음속 공기흡입구의 버즈 특성에 관한 연구)

  • Lee, Hyoung-Jin;Park, Tae-Hyoung;Choi, Jeong-Yeol;Jeung, In-Seuck
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.426-437
    • /
    • 2007
  • off-design conditions, supersonic air inlets often encounter the problem of aerodynamic instability, called inlet buzz, which causes the significant degradation of the engine performance. An experimental and numerical study was conducted to investigate the phenomenon of supersonic inlet buzz on a generic, axisymmetric, external-compression inlet with a single-surface center-body. It is understood the mechanism of buzz onset as proving that the origin of buzz is the flow choking induced by separation at the intake throat. Also it is observed the intermittent and continuous buzz mode as area ratio varies and understood the transition process through this study. The buzz frequency become to be higher as decreasing the area ratio, but for each area ratio, the frequency of pressure oscillation is the same at all points of intake.

An Implementation of Mathematics Editor Using SGML Notation (SGML 표기법을 이용하는 수식 편집기의 설계 및 구현)

  • Kim, Tae-Hoon;Hyun, Deuk-Chang;Lee, Soo-Youn
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1082-1092
    • /
    • 1996
  • The design of distrbuted systems is difficult to achieve as the execution patterns of distrbuted systems are typically more complex than those of non- distributed systems. Thus, research toward the development of design methods for distributed systems is quitely needed. As object-oriented systems and distrbuted systems share similar properties, the combination of these two is somehow natural. In this work, a design of distributed systems is introduced. The goal of the method in this paper is to provide assistance to the process of specifying a formal object- oriented specification from graphical representation specification inputs such as data flow diagrams, state transition diagrams and Petri nets. It addresses the extraction of objects, operations and reationshipsfrom the problem domain with emphasis on the specification of the characteristics of distributed systems. This object identification method is supported by a knowledge base that provides for the automated analysis and reasoning about objects and their relationsships. The final object model is represented in a format which provides a formal mechanism for reprsenting the object information.

  • PDF

Integrated Modeling of Distributed Object-Oriented Systems (다수모델을 이용한 객체지향적 분산처리 시스템의 디자인 방법)

  • Lee, Sang-Bum
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1103-1111
    • /
    • 1996
  • The design of distrbuted systems is difficult to achieve as the execution patterns of distrbuted systems are typically more complex than those of non- distributed systems. Thus, research toward the development of design methods for distributed systems is quitely needed. As object-oriented systems and distrbuted systems share similar properties, the combination of these two is somehow natural. In this work, a design of distributed systems is introduced. The goal of the method in this paper is to provide assistance to the process of specifying a formal object- oriented specification from graphical representation specification inputs such as data flow diagrams, state transition diagrams and Petri nets. It addresses the extraction of objects, operations and reationshipsfrom the problem domain with emphasis on the specification of the characteristics of distributed systems. This object identification method is supported by a knowledge base that provides for the automated analysis and reasoning about objects and their relationsships. The final object model is represented in a format which provides a formal mechanism for reprsenting the object information.

  • PDF

A Logical Simulation of Dynamic Natural Phenomena Based on Event Propagation Graph (사건 전파그래프에 기반한 동적인 자연현상의 논리적 시뮬레이션)

  • Park, Jung-Yong;Park, Jong-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.4
    • /
    • pp.10-21
    • /
    • 2001
  • This paper develops a logical simulation method for by dyversity of situations. Most existing systems, for example, games and infant tutoring systems lead users to virtual environment with unfolding situations, but are not designed to induce the change of the environment itself. In this paper, a logically simulated environment is created by defining situations and single events based on situation hierarchy structure. We elaborate the occurrence of events by classifying the causality. The occurrence or natural phenomena is dictated by physical laws and natural phenomena are expressed as the transition of the event based on event association. Specifically we define the source of the event for natural phenomena and we consider the existence of objects as a primary factor in event occurrence. The advantages of this approach include the reuse of events, that is, different events can be generated in the same flow with fresh conditions. This allows us to implement a more practical and logical environment. A drawback to this method is the difficulty in dividing a situation into events. The proposed method was implemented in the context of the change of season among natural phenomena.

  • PDF

Silicon transporter genes of Fragilariopsis cylindrus (Bacillariophyceae) are differentially expressed during the progression of cell cycle synchronized by Si or light

  • Oh, Han Sang;Lee, Sung-eun;Han, Chae-seong;Kim, Joon;Nam, Onyou;Seo, Seungbeom;Chang, Kwang Suk;Jin, EonSeon;Hwang, Yong-sic
    • ALGAE
    • /
    • v.33 no.2
    • /
    • pp.191-203
    • /
    • 2018
  • Fragilariopsis cylindrus is one of the most successful psychrophiles in the Southern Ocean. To investigate the molecular mechanism of biomineralization in this species, we attempted to synchronize F. cylindrus growth, since new cell wall formation is tightly coupled to the cell division process. Nutrient limitation analysis showed that F. cylindrus cultures rapidly stopped growing when deprived of silicate or light, while growth continued to a certain extent in the absence of nitrate. Flow cytometry analysis indicated that deprivation of either silicate or light could effectively arrest the cell cycle of this diatom species at the G1 phase, suggesting that synchrony can be established using either factor. Fluorescence labeling of new cell walls was faintly detectable as early as approximately 6 h after silicon repletion or light irradiation, and labeling was markedly intensified by 18 h. It is revealed that the synthesis of girdle bands begins before valve synthesis in this species, with active valve synthesis occurring during the G2 / M phase. Expression profiling revealed that selective member(s) of the F. cylindrus SIT genes (FcSIT) respond to silicate and light, with a different set of genes being responsive to each factor. The Si / light double depletion experiments demonstrated that expression of one FcSIT gene is possibly correlated to transition to G2 / M phase of the cell cycle, when the valve is actively formed.