• Title/Summary/Keyword: flow through the cylinder

Search Result 263, Processing Time 0.029 seconds

Enhancement of Oxygen Transfer Efficiency Using Vibrating lung Assist Device in In-Vitro Fluid Flow (In-vitro 유동장에서 진동형 폐 보조장치를 이용한 산소전달 효율의 향상)

  • 권대규;김기범;이삼철;정경락;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1332-1335
    • /
    • 2003
  • This paper presents the enhancement of oxygen transfer efficiency using the vibrating intravascular lung assist device (VIVLAD) in in-vitro experiments for patients having chronic respiratory problems. The test section was a cylinder duct with the inner diameter of 30 mm. The flow rate was controlled by the pump and monitored by a built-in flow meter. The vibration apparatus was composed of a piezo-vibrator, a function generator. and a power amplifier. The direction of vibration was radial to the fluid flow. Gas flow rates of up to 6 l/min through the 120-cm-Jong hollow fibers have been achieved by exciting a piezo-vibrator. The output of PVDF sensor were investigated by various frequencies in VIVLAD. The experimental results showed that VIVLAD would be enhance oxygen transfer efficiency.

  • PDF

A Study of Supersonic Flow Around Lateral Jet Controlled Missile (측 추력 제어 미사일 주위의 초음속 유동현상 연구)

  • Min Byung-Young;Lee Jae-Woo;Byun Yung-Hwan;Hyun Jae-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.28-34
    • /
    • 2002
  • A computational study of supersonic flow around lateral jet controlled missile has been performed. For this study, three dimensional Navier-Stokes code(AADL3D) has been developed. Spalart-Allmaras one equation turbulence model has been implemented on the AADL3D code for relatively rapid computational time. For the validation of developed code, AADL3D, pressure distributions on an ogive-cylinder body has been compared with experimental data. Also, the shock structure of sonic jet on the flat plate in the supersonic flow field has been compared with experimental flow visualization result to see the analysis capability of freestream-jet interaction case. A case study has been performed through comparing the normal force coefficient and the moment coefficient of missile body for several jet flow conditions. Current results will be used to the optimum design of a lateral jet controlled missile.

  • PDF

A study on the Analogy between Heat Transfer and Mass Transfer (열전달과 물질전달의 유사성에 관한 연구)

  • 유성연;노종광;정문기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2624-2633
    • /
    • 1993
  • Mass transfer experiment by naphthalene sublimation method has great advantages in measurement of local transfer coefficients in the region of a three dimensional flow or for a model of complex geometry, which is considered to be very difficult with conventional heat transfer measurements. Mass transfer data obtained by naphthalene sublimation technique are converted to the heat transfer data through heat/mass transfer analogy. This analogy is valid for a simple or laminar flow, but new insight is needed when applying to a turbulent flow or complex flow such as separation, reattachment and recirculation, The purpose of this research is to investigate how geometries and flow conditions incorporate heat/mass transfer analogy. Mass transfer experiments are performed using naphthalene sublimation technique for a flat plate, a circular cylinder, and rectangular cylinders. And mass transfer data are compared with earlier heat transfer measurements for the same geometries. Usefulness of analogy relation between heat and mass transfer is examined with these results.

Prediction on gas exchange process of a multi-cylinder 4-stroke cycle spark ignition engine (다기관 4사이클 스파크 점화기관의 가스 교환과정에 관한 예측)

  • 이병해;이재철;송준호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.67-87
    • /
    • 1991
  • The computer program which predicts the gas exchange process of multi-cylinder 4-Stroke cycle spark-ignition engine, can be great assistance for the design and development of new engine. In this study, the computer program was developed to predict the gas exchange process of multi-cylinder four stroke cycle spark ignition engine including intake and exhaust systems. When gas exchange process is to be calculated, the evaluation of the variation of the thermo-dynamic properties with time and position in the intake and exhaust systems is required. For the purpose, the application of the generalized method of characteristics to the gas exchange process is known as one of the method. The simulation model developed was investigated to the analysis of the branch system of multi-cylinder. The models used were the 2-zone expansion model and single zone model for in cylinder calculation and the generalized method of characteristic including area change, friction, heat transfer and entropy gradients for pipe flow calculation. The empirical constants reduced to least number as possible were determined through the comparison with the experimented indicator diagram of one particular operation condition and these constants were applied to other operating condition. The predicted pressures in cylinder were compared with the experimental results over the wide range of equivalence ratio and ignition timing. The predicted values have shown good agreement with the experimental results. The thermodynamic properties in the intake and exhaust system were predicted over the wide range of equivalence ratio and ignition timing. The obtained results can be summarized as follows. 1. Pressures in the exhaust manifold have a little influence on the equivalence ratio, a great influence on the ignition timing. 2. Pressures in the inlet manifold are nearly unchanged by the equivalence ratio and the ignition timing. 3. In this study, the behaviors of the exhaust temperature, gas in the exhaust manifold were ascertained.

  • PDF

The Comparison of Various Turbulence Models of the Flow around a Wall Mounted Square Cylinder (벽면에 부착된 사각 실린더 주변 유동에 대한 난류모델 비교연구)

  • Bae, Jun-Young;Song, Gi-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.419-428
    • /
    • 2020
  • The flow past a wall mounted square cylinder, a typical and basic shape of building, bridge or offshore structure, was simulated using URANS computation through adoption of three turbulence models, namely, the k-ε model, k-ω model, and the v2-f model. It is well known that this flow is naturally unstable due to the Karman vortex shedding and exhibits a complex flow structure in the wake region. The mean flow field including velocity profiles and the dominant frequency of flow oscillation that was from the simulations discussed earlier were compared with the experimental data observed by Wang et al. (2004; 2006). Based on these comparisons it was found that the v2-f model is most accurate for the URANS simulation; moreover, the k-ω model is also acceptable. However, the k-ε model was found to be unsuitable in this case. Therefore, v2-f model is proved to be an excellent choice for the analysis of flow with massive separation. Therefore, it is expected to be used in future by studies aiming to control the flow separation.

Flow Analysis of Gas Circuit Breakers for Developing the Small Current Interruption Performance (가스차단기의 소전류 차단성능 향상을 위한 유동해석)

  • Lee, Jong-Chul;Choi, Jong-Ung;Kang, Sung-Mo;Kim, Youn-Jea
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1961-1965
    • /
    • 2003
  • The flow analysis is needed to verify the physical phenomena through interruption processes for improving the capacity and the reliability of gas circuit breakers. Moreover the small current interruption performance of GCBs could be predicted by coupling the flow characteristics with the electric field one. In this paper, the unsteady flow characteristics and the traveling trajectory are depicted with a commercial CFD code, PHOENICS, programmed for moving motion of objects. In order to validate computational results, the measured pressure data in cylinder and in front of arcing contact are compared with the test results of small current interruption.

  • PDF

Large Eddy Simulation of Boundary Layer Transition on the Turbine Blade (LES를 이용한 축류 터빈 경계층 천이에 대한 수치해석)

  • Jin, Byung-Ju;Park, No-Ma;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.392-397
    • /
    • 2001
  • A numerical study is performed to investigate the interaction between subsonic axial turbine blade boundary layer and periodically oncoming rotor induced wakes. An implicit scheme for solving the compressible Navier-Stokes equation is developed, which adopts a 4th-order compact difference for spatial discretiztion, a 2nd order Crank-Nicolson scheme for temporal discretization and the dynamic eddy viscosity model as the subgrid scale model. The efficiency and the accuracy of the proposed method are verified by applying to some benchmark problems such as laminar cylinder flow, laminar airfoil cascade flow and a transitional flat plate boundary layer flow. Computational results show good agreements with previous experimental and numerical results. Finally, flow through a stator cascade is simulated at $Re = 7.5{\times}10^5$ without free-stream turbulence intensity. The velocity fields and skin friction coefficients in the transitional region show similar trends with previous boundary layer natural transition.

  • PDF

Observing Thermal Counterflow in He II by the Particle Image Velocimetry Technique

  • Van Sciver S. W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2005
  • The Particle Image Velocimetry (PIV) technique can be used to obtain a whole-field view of thermal counterflow velocity profile in He II. Using commercially available microspheres, we have been able to visualize the normal fluid velocity in He II thermal counterflow; however, the measured velocities are less than predicted from the two fluid model. None the less, the PIV is a useful tool for observing the counterflow field in He II flow, particularly where the flow is complex as occurs through channel constrictions or around bluff objects. The present paper shows recent results using PIV to observe He II counterflow. Two cases are discussed: 1D channel flow and turbulent flow around a circular cylinder.

Effects of Intake Port Swirl and Fuel Injection System on the Performance and Exhaust Emissions in a Turbocharged DI Diesel Engine (터보 차져 DI 디젤엔진에 있어서 성능 및 배기배출물에 미치는 흡기 포트 선회 유동 및 연료 분사계의 성능)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.45-53
    • /
    • 2005
  • The purpose of this study is to analyze that intake port swirl and fuel injection system have an effect on the engine performance in a turbocharged D.I. diesel engine of the displacement 9.4L. As result of steady flow test, when the valve eccentricity ratio moved to cylinder wall, the flow coefficient and swirl intensity is increased. And as the swirl is increased, the mean flow coefficient is decreased, whereas the Gulf factor is increased. Through this engine test, it can be expected to meet performance and emissions by the following applied parameters; the swirl ratio is 2.43, injection timing is BTDC 13oCA and compression is 15.5.

  • PDF

Effect of Partition within Opening on Helium-Air Exchange Flow (개구부에 삽입한 수직평판이 헬륨.공기치환류에 미치는 영향)

  • Tae-il Kang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.797-805
    • /
    • 2003
  • This paper describes experimental investigations of helium-air exchange flow through single opening and partitioned opening. Such exchange flows may occur following rupture accident of stand pipe in high temperature gas cooled reactor. A test vessel with a small opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed and applied to measure the exchange flow rate. A technique of flow visualization by Mach-Zehnder interferometer is provided to recognize the exchange flows. Flow measurements are made with the opening, for partition ratios H_p/H$_1$$ in the range 0 to 1. where H_p$ and H$_1$ are partition length and height of the opening. respectively. In the case of H_p/H$_1$$ of 0, flow passages of upward flow of the helium and downward flow of the air within the opening are unseparated (bidirectional), and the two flows interfere within the opening. The unseparated flow increases strength of flow resistance and therefore, the exchange flow rate is minimum through range of the partition ratios. Two flow zones, i.e., separated (unidirectional) flow zone and unseparated (bidirectional) flow zone, exist with increasing the partition length. The exchange flow rate increases with increasing the separated flow zone. It is found that a maximum exchange flow rate exists at H_p/H$_1$$ of 1. As a result of comparison of the exchange flow rates by changing the partition ratio, the fluids Interference in the unseparated zone is found to be an important factor on the helium-air exchange flow rate.