• Title/Summary/Keyword: flow test

Search Result 6,521, Processing Time 0.034 seconds

Flow capacity test of spring load safety relief valves used in LNG (LNG 선박용 spring load 안전방출밸브의 유량 성능시험)

  • Park, Kyung-Am;Lee, Saeng-Hee;Kim, Keng-Kuen;Goh, Jang-Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.95-98
    • /
    • 2006
  • Many LNG ships will be constructed in Korea and the demand of safety valves is increasing. The most important performance of the developed safety relief valves for LNG ship is flow capacity. Flow capacity tests for 8 sizes of developed safety valves were conducted in the high pressure gas flow standard system in KRISS. The initial spring force adjustment was important for setting pressure of the safety valve. The procedure of data reduction and evaluation of the safety valve performance are suggested. This procedure was approved by French Bureau Veritas and Lloyd's Register.

  • PDF

An Experimental Investigation of Swirl Angle in a Horizontal Round Tube by Flow Visualization Method

  • Tae-Hyun Chang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.879-888
    • /
    • 2003
  • Swirling air flow in a horizontal round tube was experimentally studied for its visualization. The present investigation deals with swirl angle, flow visualization studies and accompanying vortex core behavior by using oil smoke and a hot wire anemometer for Re = 40,000 and 50000 at X/D = 41, 59 and 71. In the swirl air flow, a vortex core was formed at high swirl intensity along the test tube. The swirl angle and the vortex core depended on the swirl intensity along the test tube. The results of swirl angles measured by flow visualization and hot wire reasonably agree with those of previous studies.

R-134a Flow Boiling on a Plain Tube Bundle (평활관군의 R-134a 흐름비등에 관한 연구)

  • 김종원;김정오;김내현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • In this study, flow boiling experiments were performed using R-134a on a plain tube bundle. Tests were conducted for the following range of variables; quality from 0.1 to 0.9, mass flux from $8\;kg/m^2s$ to $26\;kg/m^2s$ and heat flux from $10\;kW/m^2s$ to $40\;kW/m^2s$. The heat transfer coefficients were strongly dependent on the heat flux. However, they were almost independent on the mass flux or quality. The data are compared with the modified Chen model, which satisfactorily () predicted the data. Original Chen model, however, did not adequately predict the effect of quality. The reason may be attributed to the flow pattern of the present test, where the bubbly flow prevailed for the entire test range. The heat transfer coefficients of the tube bundle were 6~40% higher than those of the single tube pool boiling.

  • PDF

Critical Heat Flux under Forced and Natural Circulations of Water at Low-Pressure, Low-Flow Conditions

  • Kim, Yun-Il;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.315-320
    • /
    • 1995
  • The CHF phenomenon has been investigated for water flow under forced and natural circulation modes with vertical round tubes at low pressure and low flow condition. Experiments have been performed by using three different test sections for mass fluxes below 400 kg/㎡s under near atmospheric pressure. The experimental data for forced and natural circulation are compared with each other. To predict the flow rate at the two-phase region our test condition has been analyzed by RELAP5/MOD3 because the local two-phase condition inside the stainless steel tube cannot be directly measured. To predict the CHF with accuracy we have to consider the parameters at the single-phase region as well as the flow behavior at the two-phase region.

  • PDF

The Air Flow Measurement and Prediction of Pressure Loss at Engine Inlet Duct (엔진 입구 덕트에서 공기유량 측정 및 압력손실 예측방법)

  • Lee, Bo-Hwa;Yang, In-Young;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.29-34
    • /
    • 2007
  • The purpose of this paper was to address the methodology of the air flow measurement using duct mach number that was considered area-weighed average obtained by total pressure and temperature measured at engine inlet duct. Without installing boundary rake, the prediction of air flow measurement was discussed. Actual air flow measurement and pressure value using pressure loss through inlet seal were described to improve the reliability and operability of altitude engine test facility.

  • PDF

Development of the Front End Cooling Fan of a Car (자동차 프런트 엔드 쿨링팬 개발)

  • Oh, Keon-Je;Cho, Won-Bong;Bae, Chun-Keun;Lee, Su-Hwa;Lee, Seung-Bae;Ju, Phil-Ho;Kim, Jong-Cheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.384-390
    • /
    • 2005
  • A automobile front-end cooling fan are designed and tested in the present study. The design technique is developed using the one-dimensional inviscid flow through the fan blade, the empirical equations, and the performance prediction models. Numerical calculations of the three-dimensional turbulent flow around the designed cooling fan are carried out. Flow characteristics and pressure distributions on the pressure and suction side of the fan are investigated. Performance test results of the total pressure and flow rate are presented.

  • PDF

An Experimental Study of Flow Boiling Heat Transfer inside Small-Diameter Round Tubes (원형 세관내 대류비등열전달에 관한 실험적 연구)

  • 추원호;방광현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.748-755
    • /
    • 2004
  • Flow boiling heat transfer in small-diameter round tubes has been experimentally studied. The experimental apparatus consisted mainly of refrigerant pump, condenser, receiver, test section of a 1.67 mm inner-diameter round tube and pre-heater for control of refrigerant quality at the inlet of test section. To investigate the effect of bubble nucleation site characteristics of different tube materials, three different tubes of copper, aluminum and brass were used. The ranges of the major experimental parameters were 5∼30 ㎾/$m^2$ of the wall heat flux, 0.0∼0.9 of the inlet vapor quality and the refrigerant mass flux was fixed at 600 kg/$m^2$s. The experimental results showed that the flow boiling heat transfer coefficients in small tubes were affected only by heat flux, but independent of mass flux and vapor quality. The effect of tube material on flow boiling heat transfer was observed small.

Development a numerical model of flow and contaminant transport in layered soils

  • Ahmadi, Hossein;Namin, Masoud M.;Kilanehei, Fouad
    • Advances in environmental research
    • /
    • v.5 no.4
    • /
    • pp.263-282
    • /
    • 2016
  • Contaminant transport in groundwater induces major threat and harmful effect on the environment; hence, the fate of the contaminant migration in groundwater is seeking a lot of attention. In this paper a two dimensional numerical flow and transport model through saturated layered soil is developed. Groundwater flow and solute transport has been simulated numerically using proposed model. The model implements the finite volume time splitting method to discretize the main equations. The performance, accuracy and efficiency of the out coming numerical models have been successfully examined by two test cases. The verification test cases consist of two-dimensional, groundwater flow and solute transport. The final purpose of this paper is to discuss and compare the shape of contaminant plume in homogeneous and heterogeneous media with different soil properties and control of solute transport using a zone for minimizing the potential of groundwater contamination; furthermore, this model leads to select the effective and optimum remedial strategies for cleaning the contaminated aquifers.

A Experimental study on frequency characteristics of the microphone array covered with Kevlar in closed test section wind tunnel (폐쇄형 시험부에서 케블라 덮개가 장착된 마이크로폰 어레이의 주파수 특성에 대한 실험적 연구)

  • Hwang, Eun-sue;Choi, Youngmin;Han, Huyngsuk;Kim, Yangwon;Cho, Taehwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.128-134
    • /
    • 2014
  • A Experimental study on frequency characteristics of the microphone array covered with Kevlar in closed test section wind tunnel. Microphones that are flush mounted in a closed test section wall of wind tunnel are subject to very high flow noise resulting from the turbulence in the wall boundary layer. At this time the microphones measure the strong hydrodynamic fluctuations generated by the flow. The phenomena are referred to a microphone self-noise and a method for reducing this has studied. In this paper the array that covered with acoustically transparent Kevlar sheet was designed and made to reduce the flow-induced self-noise. For the validation frequency characteristics of the Kevlar, the microphone array was installed on the wall and test was performed for white noise and sine wave of several frequencies using loudspeaker. In addition, the paper compared the signals as a tension of Kevlar. The results were presented that tend to decrease the sound pressure level at high frequency above 3500Hz according to existence of Kevlar.

  • PDF

Study on Scaling Analysis and Design Methodology of Passive Injection Test Facility (피동 주입 시험 장치의 척도 해석 및 설계 방법론 연구)

  • Bae, Hwang;Lee, Minkyu;Ryu, Sung-Uk;Shin, Soo Jai;Kim, Young-In;Yi, Sung-Jae;Park, Hyun-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.50-60
    • /
    • 2016
  • A design methodology of the modeled test facility to conserve an injection performance of a passive safety injection system is proposed. This safety injection system is composed of a core makeup tank and a safety injection tank. Individual tanks are connected with pressure balance line on the top side and injection line on the bottom side. It is important to conserve the scaled initial injection flow rate and total injection time since this system can be operated by small gravity head without any active pumps. Differential pressure distribution of the injection line induced by the gravity head is determined by the vertical length and elevation of each tank. However, the total injection time is adjustable by the flow resistance coefficient of the injection line. The scaling methodology for the tank and flow resistance coefficient is suggested. A key point of this test facility design is a scaling analysis for the flow resistance coefficient. The scaling analysis proposed on this paper is based on the volume scaling law with the same vertical length to the prototype and can be extended to a model with a reduced vertical length. A set of passive injection test were performed for the tanks with the same volume and the different length. The test results on the initial flow rate and total injection time showed the almost same injection characteristics and they were in good agreement with the design values.