• Title/Summary/Keyword: flow performance

Search Result 9,092, Processing Time 0.045 seconds

Approaches to Applying Social Network Analysis to the Army's Information Sharing System: A Case Study (육군 정보공유체계에 사회관계망 분석을 적용하기 위한방안: 사례 연구)

  • GunWoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.597-603
    • /
    • 2023
  • The paradigm of military operations has evolved from platform-centric warfare to network-centric warfare and further to information-centric warfare, driven by advancements in information technology. In recent years, with the development of cutting-edge technologies such as big data, artificial intelligence, and the Internet of Things (IoT), military operations are transitioning towards knowledge-centric warfare (KCW), based on artificial intelligence. Consequently, the military places significant emphasis on integrating advanced information and communication technologies (ICT) to establish reliable C4I (Command, Control, Communication, Computer, Intelligence) systems. This research emphasizes the need to apply data mining techniques to analyze and evaluate various aspects of C4I systems, including enhancing combat capabilities, optimizing utilization in network-based environments, efficiently distributing information flow, facilitating smooth communication, and effectively implementing knowledge sharing. Data mining serves as a fundamental technology in modern big data analysis, and this study utilizes it to analyze real-world cases and propose practical strategies to maximize the efficiency of military command and control systems. The research outcomes are expected to provide valuable insights into the performance of C4I systems and reinforce knowledge-centric warfare in contemporary military operations.

Vehicle Acceleration and Vehicle Spacing Calculation Method Used YOLO (YOLO기법을 사용한 차량가속도 및 차두거리 산출방법)

  • Jeong-won Gil;Jae-seong Hwang;Jae-Kyung Kwon;Choul-ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.82-96
    • /
    • 2024
  • While analyzing traffic flow, speed, traffic volume, and density are important macroscopic indicators, and acceleration and spacing are the important microscopic indicators. The speed and traffic volume can be collected with the currently installed traffic information collection devices. However, acceleration and spacing data are necessary for safety and autonomous driving but cannot be collected using the current traffic information collection devices. 'You Look Only Once'(YOLO), an object recognition technique, has excellent accuracy and real-time performance and is used in various fields, including the transportation field. In this study, to measure acceleration and spacing using YOLO, we developed a model that measures acceleration and spacing through changes in vehicle speed at each interval and the differences in the travel time between vehicles by setting the measurement intervals closely. It was confirmed that the range of acceleration and spacing is different depending on the traffic characteristics of each point, and a comparative analysis was performed according to the reference distance and screen angle to secure the measurement rate. The measurement interval was 20m, and the closer the angle was to a right angle, the higher the measurement rate. These results will contribute to the analysis of safety by intersection and the domestic vehicle behavior model.

Key Factors of Talented Scientists' Growth and ExpeI1ise Development (과학인재의 성장 및 전문성 발달과정에서의 영향 요인에 관한 연구)

  • Oh, Hun-Seok;Choi, Ji-Young;Choi, Yoon-Mi;Kwon, Kwi-Heon
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.9
    • /
    • pp.907-918
    • /
    • 2007
  • This study was conducted to explore key factors of expertise development of talented scientists who achieved outstanding research performance according to the stages of expertise development and dimensions of individual-domain-field. To fulfill the research purpose, 31 domestic scientists who were awarded major prizes in the field of science were interviewed in-depth from March to September, 2007. Stages of expertise development were analyzed in light of Csikszentmihalyi's IDFI (individual-domain-field interaction) model. Self-directed learning, multiple interests and finding strength, academic and liberal home environment, and meaningful encounter were major factors affecting expertise development in the exploration stage. In the beginner stage, independence, basic knowledge on major, and thirst for knowledge at university affected expertise development. Task commitment, finding flow, finding their field of interest and lifelong research topic, and mentor in formal education were the affecting factors in the competent stage. Finally, placing priority, communication skills, pioneering new domain, expansion of the domain, and evaluation and support system affected talented scientists' expertise development in the leading stage. The meaning of major patterns of expertise development were analyzed and described. Based on these analyses, educational implications for nurturing scientists were suggested.

A Data-Driven Approach and Network Analysis of Technological Innovation Resources in SMEs (데이터 기반 접근법을 활용한 중소기업 기술혁신자원의 네트워크 분석)

  • Kyung Min An;Young-Chan Lee
    • Knowledge Management Research
    • /
    • v.24 no.4
    • /
    • pp.103-129
    • /
    • 2023
  • This study aims to analyze the network structure of technological innovation resources in SMEs, especially manufacturing firms, and reveal the differences between innovative and non-innovative firms. The study first analyzes connection centrality, flow-mediated centrality, and power centrality for all firms, and derives structural equivalence through CONCOR analysis. Then, the network structure of innovative and non-innovative firms was compared and analyzed according to innovation performance and creation. The results show that entrepreneurship and corporate innovation strategy have a significant impact on the analysis of technological innovation resources of all firms. According to the CONCOR analysis, the innovation resources of SMEs are organized into seven clusters, which can be defined as intrinsic product innovation resources, competitive advantage promotion resources, cooperative activities resources, information system resources, and innovation protection resources. The network analysis of innovative and non-innovative firms showed that innovative firms focused on enhancing competitiveness and improving quality, while non-innovative firms tended to focus more on existing products and customers. In addition, innovative firms had eight clusters, while non-innovative firms had six clusters, suggesting that innovative firms utilize resources diversely to pursue structural change and new value creation, while non-innovative firms operate technological innovation resources in a more stable form. This study emphasizes the importance of entrepreneurship and corporate innovation strategy in SMEs' technological innovation, and suggests that strong internal efforts are needed to increase innovativeness. These findings have important implications for strategy formulation and policy development for technological innovation in SMEs.

Analysis of grout injection distance in single rock joint (단일절리 암반에서 그라우팅 주입거리 분석)

  • Ji-Yeong Kim;Jo-Hyun Weon;Jong-Won Lee;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.541-554
    • /
    • 2023
  • The utilization of underground spaces in relation to tunnels and energy/waste storage is on the rise. To ensure the stability of underground spaces, it is crucial to reinforce rock fractures and discontinuities. Discontinuities, such as joints, can weaken the strength of the rock and lead to groundwater inflow into underground spaces. In order to enhance the strength and stability of the area around these discontinuities, rock grouting techniques are employed. However, during rock grouting, it is impossible to visually confirm whether the grouting material is being smoothly injected as intended. Without proper injection, the expected increases in strength, durability, and degree of consolidation may not be achieved. Therefore, it is necessary to predict in advance whether the grouting material is being injected as designed. In this study, we aimed to assess the injection performance based on injection variables such as the water/cement mixture ratio, injection pressure, and injection flow using UDEC (Universal Distinct Element Code) numerical program. Additionally, numerical results were validated by the lab experiment. The results of this study are expected to help optimize variables such as injection material properties, injection time, and pump pressure in the grouting design in the field.

Experimental study on ultra-high strength concrete(130 MPa) (초고강도 콘크리트(130MPa)에 대한 실험적 연구)

  • Cho Choonhwan;Yang Dong-il
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 2024
  • High-rise, large-scale, and diversification of buildings are possible, and the reduction of concrete cross-sections reduces the weight of the structure, thereby increasing or decreasing the height of the floor, securing a large number of floors at the same height, securing a large effective space, and reducing the amount of materials, rebar, and concrete used for designating the foundation floor. In terms of site construction and quality, a low water binder ratio can reduce the occurrence of dry shrinkage and minimize bleeding on the concrete surface. It has the advantage of securing self-fulfilling properties by improving fluidity by using high-performance sensitizers, making it easier to construct the site, and shortening the mold removal period by expressing early strength of concrete. In particular, with the rapid development of concrete-related construction technology in recent years, the application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher is expanding in high-rise buildings. However, although high-rise buildings with more than 120 stories have recently been ordered or scheduled in Korea, the research results of developing ultra-high-strength concrete with more than 130 MPa class considering field applicability and testing and evaluating the actual applicability in the field are insufficient. In this study, in order to confirm the applicability of ultra-high-strength concrete in the field, a preliminary experiment for the member of a reduced simulation was conducted to find the optimal mixing ratio studied through various indoor basic experiments. After that, 130 MPa-class ultra-high-strength concrete was produced in a ready-mixed concrete factory in a mock member similar to the life size, and the flow characteristics, strength characteristics, and hydration heat of concrete were experimentally studied through on-site pump pressing.

Evaluation of Hydrogeological Characteristics of Deep-Depth Rock Aquifer in Volcanic Rock Area (화산암 지역 고심도 암반대수층 수리지질특성 평가)

  • Hangbok Lee;Chan Park;Junhyung Choi;Dae-Sung Cheon;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.231-247
    • /
    • 2024
  • In the field of high-level radioactive waste disposal targeting deep rock environments, hydraulic characteristic information serves as the most important key factor in selecting relevant disposal sites, detailed design of disposal facilities, derivation of optimal construction plans, and safety evaluation during operation. Since various rock types are mixed and distributed in a small area in Korea, it is important to conduct preliminary work to analyze the hydrogeological characteristics of rock aquifers for various rock types and compile the resulting data into a database. In this paper, we obtained hydraulic conductivity data, which is the most representative field hydraulic characteristic of a high-depth volcanic bedrock aquifer, and also analyzed and evaluated the field data. To acquire field data, we used a high-performance hydraulic testing system developed in-house and applied standardized test methods and investigation procedures. In the process of hydraulic characteristic data analysis, hydraulic conductivity values were obtained for each depth, and the pattern of groundwater flow through permeable rock joints located in the test section was also evaluated. It is expected that the series of data acquisition methods, procedures, and analysis results proposed in this report can be used to build a database of hydraulic characteristics data for high-depth rock aquifers in Korea. In addition, it is expected that it will play a role in improving technical know-how to be applied to research on hydraulic characteristic according to various bedrock types in the future.

Performance Factors for Delaying Slope Failure through Hydraulic Experiments of Dam Overtopping (댐 월류 수리실험을 통한 사면붕괴지연 성능인자 도출)

  • Sung Woo, Lee;Dong Hyun Kim;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.17 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • Most reservoirs in South Korea are earthen dams, mainly because they are cost-effective and easy to construct. However, earthen dams are highly vulnerable to seepage and overtopping, making them prone to sudden failure during excessive flooding. Such sudden failures can lead to a rapid increase in flood discharge, causing significant damage to downstream rivers and inhabited areas. This study investigates the effect of riprap placement on the slopes of earthen dams in delaying dam failure. Delaying the failure time is crucial as it allows more time for evacuation, significantly reducing potential casualties, which is essential from a disaster response perspective. Hydraulic experiments were conducted in a straight channel, using two different sizes of riprap for protection. Unlike previous studies, these experiments were performed under unsteady flow conditions to reflect the impact of rising water levels inside the dam. The target dam for the study was a cofferdam installed in a diversion tunnel. Experimental results indicated that the presence of riprap protection effectively prevented slope failure under the tested conditions. Without riprap protection, increasing the size of the riprap delayed the failure time. This delay can reduce peak discharge, mitigating damage downstream of the dam. Furthermore, these findings can serve as critical reference material for establishing emergency action plans (EAP) for reservoir failure.

Test Bed Studies with Highly Efficient Amine CO2 Solvent (KoSol-4) (고효율 습식 아민 CO2 흡수제(KoSol-4)를 적용한 Test bed 성능시험)

  • Lee, Ji Hyun;Kwak, No-Sang;Lee, In Young;Jang, Kyung Ryoung;Jang, Se Gyu;Lee, Kyung Ja;Han, Gwang Su;Oh, Dong-Hun;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.267-271
    • /
    • 2013
  • Test bed studies with highly efficient amine $CO_2$ solvent (KoSol-4) developed by KEPCO research institute were performed. For the first time in Korea, evaluation of post-combustion $CO_2$ capture technology to capture 2 ton $CO_2$/day from a slipstream of the flue gas from a coal-fired power station was performed. Also the analysis of solvent regeneration energy was conducted to suggest the reliable performance data of the KoSol-4 solvent. For this purpose, we have tested 5 campaigns changing the operating conditions of the solvent flow rate and the stripper pressure. The overall results of these campaigns showed that the $CO_2$ removal rate met the technical guideline ($CO_2$ removal rate: 90%) suggested by IEA-GHG and that the regeneration energy of the KoSol-4 showed about 3.0~3.2 GJ/$tCO_2$ which was, compared to that of the commercial solvent MEA (Monoethanolamine), about 25% reduction of regeneration energy. Based on these results, we could confirm the good performance of the KoSol-4 solvent and the $CO_2$ capture process developed by KEPCO research institute. And also it was expected that the cost of $CO_2$ avoided could be reduced drastically if the KoSol-4 is applied to the commercial scale $CO_2$ capture plant.

A Study of Radon Reduction using Panel-type Activated Carbon (판재형 활성탄을 이용한 라돈 저감 연구)

  • Choi, Il-Hong;Kang, Sang-Sik;Jun, Jae-Hoon;Yang, Seung-Woo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.297-302
    • /
    • 2017
  • Recently, building materials and air purification filters with eco-friendly charcoal are actively studying to reduce the concentration of radon gas in indoor air. In this study, radon reduction performance was assessed by designing and producing new panel-type activated carbon filter that can be handled more efficiently than conventional charcoal filters, which can reduce radon gas. For the fabrication of our panel-type activated carbon filter, first the pressed molding product after mixing activated carbon powder and polyurethane. Then, through diamond cutting, the activated carbon filter of 2 mm, 4 mm and 6 mm thickness were fabricated. To investigate the physical characteristics of the fabricated activated carbon filter, a surface area and flexural strength measurement was performed. In addition, to evaluate the reduction performance of radon gas in indoor, the radon concentration of before and after the filter passes from a constant amount of air flow using three acrylic chambers was measured, respectively. As a result, the surface area of the fabricated activated carbon was approximately $1,008m^2/g$ showing similar value to conventional products. Also, the flexural load was found to have three times higher value than the gypsum board with 435 N. Finally, the radon reduction efficiency from indoor gas improved as the thickness of the activated carbon increases, resulting in an excellent radon removal rate of more than 90 % in the 6 mm thick filter. From the experimental results, the panel-type activated carbon is considered to be available as an eco-friendly building material to reduce radon gas in an enclosed indoor environment.