• Title/Summary/Keyword: flow monitoring

Search Result 1,247, Processing Time 0.029 seconds

A Study on the Development of a Control and Monitoring System for Impressed Current Corrosion Protection (선박용 차세대 외부전원방식 제어 및 감시 시스템 UNIT 개발)

  • Kim, Y.B.;Kim, B.Y.;Suh, J.H.;Kim, J.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.104-110
    • /
    • 2006
  • Corrosion has been around for all of recorded history. Cathodic protection is the electrical solution to the corrosion problem. Corrosion is not exactly a new topic. It has been around since the beginning of time. Corrosion is simply the loss of material resulting from current leaving a metal, following through a medium, and returning to the metal at a different point. Corrosion takes many forms and has various names, such as oxidation, rust, chemical, and bacteria action. Regardless of the agent, all corrosion is the result of electrical current flow. Various methods are used to treat corrosion or to try to prevent ti. Some of these include chemical treatment. coatings, and electrical current. Especially, proper impressed current can stop corrosive action on the protected surface. In this article, we introduce the Impressed Current Cathodic Protection (ICCP) Control and monitoring system developed by ourselves. The ICCP system is composed of a power supply, anode, reference electrode and controller. The main issue is to control the current flow on the desired value such that it is possible to force a metal to be more negative(cathodic) than the natural state. From the this process, we can achieve the cathodic protection. Of course, in the developed system, the necessary functions are possessed, such as remote control, monitoring of system fault detection etc. Some experimental results show the system performance and usefulness.

  • PDF

Implementation of Remote Monitoring Scenario using CDMA Short Message Service for Protected Crop Production Environment

  • Bae, Keun-Soo;Chung, Sun-Ok;Kim, Ki-Dae;Hur, Seung-Oh;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.36 no.4
    • /
    • pp.279-284
    • /
    • 2011
  • Protected vegetable production area is greater than 26% of the total vegetable production area in Korea, and portion of protected production area is increasing for flowers and fruits. To secure stable productivity and profitability, continuous and intensive monitoring and control of protected crop production environment is critical, which is labor- and time-consuming. Failure to maintain proper environmental conditions (e.g., light, temperature, humidity) leads to significant damage to crop growth and quality, therefore farmers should visit or be present close to the production area. To overcome these problems, application of remote monitoring and control of crop production environment has been increasing. Wireless monitoring and control systems have used CDMA, internet, and smart phone communications. Levels of technology adoption are different for farmers' needs for their cropping systems. In this paper, potential of wireless remote monitoring of protected agricultural environment using CDMA SMS text messages was reported. Monitoring variables were outside weather (precipitation, wind direction and velocity, temperature, and humidity), inside ambient condition (temperature, humidity, $CO_2$ level, and light intensity), irrigation status (irrigation flow rate and pressure), and soil condition (volumetric water content and matric potential). Scenarios and data formats for environment monitoring were devised, tested, and compared. Results of this study would provide useful information for adoption of wireless remote monitoring techniques by farmers.

Water Quality Analysis in Nakdong River Tributaries Using 2012-2016 Monitoring Data (2012-2016년 모니터링 자료를 이용한 낙동강 지류·지천 수질 특성 분석)

  • Son, Younggyu;Na, Seungmin;Im, Tae Hyo;Kim, Sang-hun
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.680-688
    • /
    • 2017
  • Water quality monitoring for flow rates and BOD/COD/T-N/T-P/SS/TOC concentrations has been conducted in Nakdong river tributaries since 2011. In this study concentrations and loading rates of BOD, T-P, and TOC were analyzed to evaluate water quality monitoring stations using accumulated data at 206 tributary monitoring stations in Nakdong river 2012 ~ 2016. Average concentration ranges for 206 monitoring stations were 0.3 ~ 6.4 mg/L, 0.025 ~ 1.562 mg/L, and 0.6 ~ 10.7 mg/L for BOD, T-P, and TOC, respectively. Additionally, average loading rate ranges were 0.96 ~ 46,040 kg/d, 0.087 ~ 1,834 kg/d, and 1.51 ~ 80,425 kg/d for BOD, T-P, and TOC, respectively. Average concentration for BOD, T-P, and TOC at each monitoring station was evaluated using ambient water quality standards of rivers and water quality regulation level for medium-sized management areas. Average loading rate and specific loading rate (loading rate/drainage basin area) for BOD, T-P, and TOC at each monitoring station was considered to evaluate monitoring stations using suggested classification (BOD, TOC: -1, 1 ~ 10, 10 ~ 100, 100 ~ 1,000, and 1,000 ~ kg/d; T-P: -0.1. 0.1 ~ 1, 1 ~ 10, 10 ~ 100, and 100 ~ kg/d) Using results of this study, various water quality status maps were provided, and three evaluation methods were suggested to determine priority monitoring stations in Nakdong river for rational water quality control and tributaries basin management.

A Preliminary Research on Optical In-Situ Monitoring of RF Plasma Induced Ion Current Using Optical Plasma Monitoring System (OPMS)

  • Kim, Hye-Jeong;Lee, Jun-Yong;Chun, Sang-Hyun;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.523-523
    • /
    • 2012
  • As the wafer geometric requirements continuously complicated and minutes in tens of nanometers, the expectation of real-time add-on sensors for in-situ plasma process monitoring is rapidly increasing. Various industry applications, utilizing plasma impedance monitor (PIM) and optical emission spectroscopy (OES), on etch end point detection, etch chemistry investigation, health monitoring, fault detection and classification, and advanced process control are good examples. However, process monitoring in semiconductor manufacturing industry requires non-invasiveness. The hypothesis behind the optical monitoring of plasma induced ion current is for the monitoring of plasma induced charging damage in non-invasive optical way. In plasma dielectric via etching, the bombardment of reactive ions on exposed conductor patterns may induce electrical current. Induced electrical charge can further flow down to device level, and accumulated charges in the consecutive plasma processes during back-end metallization can create plasma induced charging damage to shift the threshold voltage of device. As a preliminary research for the hypothesis, we performed two phases experiment to measure the plasma induced current in etch environmental condition. We fabricated electrical test circuits to convert induced current to flickering frequency of LED output, and the flickering frequency was measured by high speed optical plasma monitoring system (OPMS) in 10 kHz. Current-frequency calibration was done in offline by applying stepwise current increase while LED flickering was measured. Once the performance of the test circuits was evaluated, a metal pad for collecting ion bombardment during plasma etch condition was placed inside etch chamber, and the LED output frequency was measured in real-time. It was successful to acquire high speed optical emission data acquisition in 10 kHz. Offline measurement with the test circuitry was satisfactory, and we are continuously investigating the potential of real-time in-situ plasma induce current measurement via OPMS.

  • PDF

A Study on Contamination Sensitivity and Condition Monitoring for a Pump (펌프의 오염 민감도와 성능 감시에 대한 연구)

  • 이재천
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.124-130
    • /
    • 1998
  • A mathematical model describing gear pump flow degradation in the presense of abrasive particles is presented. The model considers the operating parameters as Sommerfeld number, so that contamination sensitivity test results could be conversed to field application to predict contamination service life. A method to estimate the volumetric efficiency and the contamination level of a pump is proposed by measuring the temperature differences in the fluid. Test results show the validity of the theoretical establishments.

  • PDF

Water Quality Monitoring from a Watershed with Small-Scale Livestock Production Farms (소규모 축산 농가가 산재한 유역 수질 모니터링(지역환경 \circled1))

  • 이남호;윤광식;김성준;홍성구
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.543-549
    • /
    • 2000
  • Water quality was monitored from a watershed with small-scale livestock production farms. To evaluate pollution potential, land use, population, the size of livestock production of each farm, and livestock management were surveyed. Climate and stream flow data were gathered. Water samples were taken periodically for base conditions and some storm events. Pollutant loading was estimated by flow volume and concentrations of constituents.

  • PDF

Oxygen Plasma Characterization Analysis for Plasma Etch Process

  • Park, Jin-Su;Hong, Sang-Jeen
    • Journal of the Speleological Society of Korea
    • /
    • no.78
    • /
    • pp.29-31
    • /
    • 2007
  • This paper is devoted to a study of the characterization of the plasma state. For the purpose of monitoring plasma condition, we experiment on reactive ion etching (RIE) process. Without actual etch process, generated oxygen plasma, measurement of plasma emission intensity. Changing plasma process parameters, oxygen flow, RF power and chamber pressure have controlled. Using the optical emission spectroscopy (OES), we conform to the unique oxygen wavelength (777nm), the most powerful intensity region of the designated range. Increase of RF power and chamber pressure, emission intensity is increased. oxygen flow is not affect to emission intensity.

The Additional Functions and Data Transmission Flow Diagram for Effective Operation of Distribution Automation System (배전자동화시스템의 효율적인 운용을 위한 구가기능 및 정보전송체계)

  • Lee, Jung-Ho;Ha, Bok-Nam;Cho, Nam-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.211-213
    • /
    • 1998
  • This paper introduces the additional remote monitoring and remote setting functions needed to operate the distribution automation system effectively. we compare the additional functions with the old functions. The remote setting of minimum trip value of fault indicator is an example of additional function. It saves time and line-man's power. Also this paper describes the data transmission flow diagram for operation of distribution automation system using wireless communication method.

  • PDF