• Title/Summary/Keyword: flow induced load

Search Result 89, Processing Time 0.022 seconds

Defending HTTP Web Servers against DDoS Attacks through Busy Period-based Attack Flow Detection

  • Nam, Seung Yeob;Djuraev, Sirojiddin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2512-2531
    • /
    • 2014
  • We propose a new Distributed Denial of Service (DDoS) defense mechanism that protects http web servers from application-level DDoS attacks based on the two methodologies: whitelist-based admission control and busy period-based attack flow detection. The attack flow detection mechanism detects attach flows based on the symptom or stress at the server, since it is getting more difficult to identify bad flows only based on the incoming traffic patterns. The stress is measured by the time interval during which a given client makes the server busy, referred to as a client-induced server busy period (CSBP). We also need to protect the servers from a sudden surge of attack flows even before the malicious flows are identified by the attack flow detection mechanism. Thus, we use whitelist-based admission control mechanism additionally to control the load on the servers. We evaluate the performance of the proposed scheme via simulation and experiment. The simulation results show that our defense system can mitigate DDoS attacks effectively even under a large number of attack flows, on the order of thousands, and the experiment results show that our defense system deployed on a linux machine is sufficiently lightweight to handle packets arriving at a rate close to the link rate.

Experimental and Computational Investigation of Wind Flow Field on a Span Roof Structure

  • K B Rajasekarababu;G Vinayagamurthy;Ajay Kumar T M;Selvirajan S
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.287-300
    • /
    • 2022
  • Unconventional structures are getting more popular in recent days. Large-span roofs are used for many structures, such as airports, stadiums, and conventional halls. Identifying the pressure distribution and wind load acting on those structures is essential. This paper offers a collaborative study of computational fluid dynamics (CFD) simulations and wind tunnel tests for assessing wind pressure distribution for a building with a combined slender curved roof. The hybrid turbulence model, Improved Delayed Detached Eddy Simulation (IDDES), simulates the open terrain turbulent flow field. The wind-induced local pressure coefficients on complex roof structures and the turbulent flow field around the structure were thus calculated based upon open terrain wind flow simulated with the FLUENT software. Local pressure measurements were investigated in a boundary layer wind tunnel simultaneous to the simulation to determine the pressure coefficient distributions. The results predicted by CFD were found to be consistent with the wind tunnel test results. The comparative study validated that the recommended IDDES model and the vortex method associated with CFD simulation are suitable tools for structural engineers to evaluate wind effects on long-span complex roofs and plan irregular buildings during the design stage.

Sloshing Load Analysis in Spherical Tank of LNG Carrier (LNG 운반선의 구형 화물창 슬로싱 해석)

  • Noh B. J.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.22-30
    • /
    • 2005
  • Sloshing loads, produced by the violent liquid free-surface motions inside the cargo tank have become an important design parameter in ship building industry since there have been demands for the increased sizes of the cargo containment system of LNG carriers. In this study, sloshing impact pressure acting on the shell of the spherical cargo tank of an LNG carrier as well as dynamic pressure and flow behavior around the pump tower located at the center of the tank have been calculated. Comparative numerical sloshing simulations for a spherical LNG tank using 2-D LR.FLUIDS which is based on the finite difference method and 3-D MSC.DYTRAN which is capable of calculating nonlinear fluid-structure interaction have been carried out. A method of calculating sloshing-induced dynamic loads and the subsequent structural strength analysis for pump tower of a spherical LNG carrier using MSC. DYTRAN and MSC.NASTRAN have been presented.

  • PDF

Visualization of Oil Behavior in Piston Land Region (피스톤 랜드 부에서 오일거동의 가시화)

  • 민병순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.105-113
    • /
    • 2000
  • In order to clarify the final process of oil consumption, the distribution and flow of oil through each ring were visualized by induced fluorescence method. Motoring and firing test were performed in a single cylinder research engine with transparent cylinder liner. The appropriate calibration techniques were used to solve the unstability of induced light intensity as well as to know the relation of the oil film thickness and output signal. Oil behavior was also observed at dynamic state by high speed CCD camera. By analyzing the oil film thickness converted from the photographed image, it was observed that the main route of oil transport through each ring is the end gap under the usual operating condition, low engine speed and low load condition. Oil film thickness is observed to be irregular and tend to move in a body horizontally at a given piston land. And it is also found that oil flows through oil ring gap so quickly that it can be observed in a single cycle, but it flows so slowly through top and 2nd compression rings that it takes quite a long time to detect the flow.

  • PDF

The Evaluation of Wind-induced Pressure for the Shell Structures using Computational Fluid Dynamics (전산유체역학을 이용한 셸 구조의 형상에 따른 풍압 평가)

  • Han, Sang-Eul;Park, Ji-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.579-584
    • /
    • 2008
  • The importance and the interest of wind load have emphasized since the damage of the Jeju World cup Stadium and Main Stadium of Busan Asiad in 2002, and the appearance of high-rise buildings. In general, a evaluation for the wind load acting on structures have been carried out mainly through the wind tunnel test, but this technique has the huge shortcomings that consume too much cost and experimental time. However, with the rapid advances on computers, it is possible to analyze the wind pressure distribution acting on structures by numerical scheme. In this paper, to predict the wind pressure distribution acting on shell structures having the various shape by numerical simulation, governing equations of fluid flow and turbulent model is formulated. Also, evaluates the wind pressure coefficient in accordance with the structural shape for shell structures like as a membrane structures and dome structures.

  • PDF

An Analysis for Turbulent Hybrid Bearings with Fluid Inertia and Swirl Injection Effects (유체의 관성력과 스월의 영향을 고려한 난류 하이브리드 베어링의 해석)

  • 이용복;김창호;최동훈
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.85-91
    • /
    • 1996
  • An analysis for turbulent hybrid beatings with fluid inertia and swirl injection effect was derived for studying static characteristics of swirl-controlled hybrid journal. The swirl-controlled hybrid journal beating is considered to have more freedom in stability control in high speed rotating machinery. Current analysis is compared with experimental results with 3-recess hydrostatic journal bearing. The analysis revealed that the fluid momentum exchange at orifice discharge could produce pressure rise inside the recess region which can control the shear flow induced by journal rotation. The analysis also shows that the swirl-controlled hybrid journal beating has a capability of controlling load carrying capacity and stability by manipulating supply pressure and injection angle.

Visualization of Vortex Flow over a Delta Wing with LEX (LEX를 갖는 삼각날개의 와유동 가시화)

  • Shon Myong Hwan;Chang Jo Won
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.52-57
    • /
    • 2004
  • The development and interaction of vortices over a delta wing with leading edge extension (LEX) was investigated through off-surface flow visualization using micro water droplets and a laser beam sheet. Angles of attack of $20^{\circ}$ and 24$^{\circ}$ were tested at sideslip angles of $0^{\circ}$, $-5^{\circ}$, and $-10^{\circ}$ The flow Reynolds number based on the main-wing root chord was $1.82{\times}10^{5}$. The wing vortex and the LEX vortex coiled around each other while maintaining comparable strength and identity at a zero sideslip. The increase of angle of attack intensified the coiling and shifted the cores of the wing and LEX vortices inboard and upward. By sideslip, the coiling, the merging and the diffusion of the wing and LEX vortices were increased on the windward side, whereas they were delayed significantly on the leeward side. The present study confirmed that the sideslip angle had a profound effect on the vortex structure and interaction of a delta wing with LEX, which characterized the vortex-induced aerodynamic load.

  • PDF

Effects of the Inlet Boundary Layer Thickness on the Flow in an Axial Compressor (I) - Hub Corner Stall and Tip Leakage Flow - (입구 경계층 두께가 축류 압축기 내부 유동에 미치는 영향 (I) - 허브 코너 실속 및 익단 누설 유동 -)

  • Choi, Min-Suk;Park, Jun-Young;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.948-955
    • /
    • 2005
  • A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the internal flow in a low-speed axial compressor operating at the design condition($\phi=85\%$) and near stall condition($\phi=65\%$). At the design condition, the flows in the axial compressor show, independent of the inlet boundary layer thickness, similar characteristics such as the pressure distribution, size of the hub comer-stall, tip leakage flow trajectory, limiting streamlines on the blade suction surface, etc. However, as the load is increased, the hub corner-stall grows to make a large separation region at the junction of the hub and suction surface for the inlet condition with thick boundary layers at the hub and casing. Moreover, the tip leakage flow is more vortical than that observed in case of the thin inlet boundary layer and has the critical point where the trajectory of the tip leakage flow is abruptly turned into the downstream. For the inlet condition with thin boundary layers, the hub corner-stall is diminished so it is indistinguishable from the wake. The tip leakage flow leans to the leading edge more than at the design condition but has no critical point. In addition to these, the severe reverse flow, induced by both boundary layer on the blade surface and the tip leakage flow, can be found to act as the blockage of flows near the casing, resulting in heavy loss.

INTEGRITY ANALYSIS OF AN UPPER GUIDE STRUCTURE FLANGE

  • LEE, KI-HYOUNG;KANG, SUNG-SIK;JHUNG, MYUNG JO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.766-775
    • /
    • 2015
  • The integrity assessment of reactor vessel internals should be conducted in the design process to secure the safety of nuclear power plants. Various loads such as self-weight, seismic load, flow-induced load, and preload are applied to the internals. Therefore, the American Society of Mechanical Engineers (ASME) Code, Section III, defines the stress limit for reactor vessel internals. The present study focused on structural response analyses of the upper guide structure upper flange. The distributions of the stress intensity in the flange body were analyzed under various design load cases during normal operation. The allowable stress intensities along the expected sections of stress concentration were derived from the results of the finite element analysis for evaluating the structural integrity of the flange design. Furthermore, seismic analyses of the upper flange were performed to identify dynamic behavior with respect to the seismic and impact input. The mode superposition and full transient methods were used to perform time-history analyses, and the displacement at the lower end of the flange was obtained. The effect of the damping ratio on the response of the flange was also evaluated, and the acceleration was obtained. The results of elastic and seismic analyses in this study will be used as basic information to judge whether a flange design meets the acceptance criteria.

Numerical Analysis on Effects of the Boundary Layer Fence Equipped on the Hub of Rotor in the First Stage Axial Flow Gas Turbine (1단 축류 가스터빈내 동익의 허브면에 장착된 경계층 펜스의 효과에 대한 수치 해석적 연구)

  • Yoon, Deok-Kyu;Kim, Jae-Choon;Kim, Dae-Hyun;Lee, Won-Suk;Chung, Jin-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.8-16
    • /
    • 2009
  • The objective of this study is to investigate the three-dimensional turbulence flow characteristics of a rotor passage of an one-stage axial flow gas turbine and to investigate the effects of a boundary layer fence installed on the hub endwall of the rotor passage. Secondary flows occurring within the rotor passage (e.g. horseshoe vortex, passage vortex, and cross flow) cause secondary loss and reduce turbine efficiency. To control these secondary flows, a boundary layer fence measuring half the height of the thickness of the inlet boundary layer was installed on the hub endwall of the rotor passage. This study was performed numerically. The results show that the wake and secondary flows generated by the stator reduced the rotor load to constrain the development of cross flow and secondary flow reinforced by the rotor passage. In addition, the secondary vortices occurring within the rotor passage were reduced by the rotation of the rotor. Although, the boundary layer fence induced additional vortices, giving rise to an additional loss of turbine, its presence was shown to reduce the total pressure loss when compared to effects of the case without fence regardless of the relative position of blades by enervating secondary vortices occurred within the rotor passage.