• 제목/요약/키워드: flow impingement

검색결과 217건 처리시간 0.025초

원형제트출구 전단류 조절에 따른 제트충돌면에서의 열전달 특성 ( 2 ) - 음향여기된 제트 - (Heat Transfer Characteristics on Impingement Surface with Control of Axisymmetric Jet ( 2 ) - With Acoustic Excitation -)

  • 황상동;이창호;조형희
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.373-381
    • /
    • 2000
  • The flow and heat transfer characteristics on the impingement surface can be controlled by the change of vortex with the acoustic excitation, because the flow characteristics of an impinging jet are affected strongly by the vortices formed at the jet exit. To investigate the effects of acoustic excitation, we measured the velocity, turbulent intensity distributions for the free jet and local heat transfer coefficients on a impingement surface. As the acoustic excitation, subharmonic frequency of excited frequency plays an important role to the control of the jet flow. If the vortex pairings are promoted by the acoustic excitation, turbulence intensity of the jet flow is increased quickly. On the other hand if the vortex pairings are suppressed, the jet flow has low turbulence intensity at the center of the jet. Therefore, the low heat transfer rates are obtained on the impingement plate for a small nozzle-to-plate distance. However, it has high heat transfer rates at a large distance between the nozzle and plate due to the increasing of potential-core length.

급수가열기 동체 감육 현상과 완화 방안 및 충격판 설계개선 (Shell Wall Thinning and Mitigation Plan and Design Modification of a Feedwater Heater Impingement Baffle)

  • 김경훈;황경모;박상훈
    • 한국정밀공학회지
    • /
    • 제27권6호
    • /
    • pp.55-63
    • /
    • 2010
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle inside feedwater heater installed downstream of the turbine extraction stream line. At that point, the extract steam from the turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows to reverse direction after impinging the impingement baffle, the shell wall of feedwater heaters may be affected by flow-accelerated corrosion. In this paper, to compare degree of shell wall thinning mitigation rate to squared type with mitigation rate of other type baffle plate, three different types of impingement baffle plate-squared, curved and mitigating type-applied inside the shell. With these comparison data, this paper describes operation of experiments and numerical analysis which is composed similar condition with real feed water heater. And flow visualization is operated for verification of experiments and numerical analysis. In conclusion, this study shows that mitigating type baffle plate is more effective than other baffle plate about prevention of pressure concentration and pressure value decrease.

Computations of Droplet Impingement on Airfoils in Two-Phase Flow

  • Kim, Sang-Dug;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2312-2320
    • /
    • 2005
  • The aerodynamic effects of leading-edge accretion can raise important safety concerns since the formulation of ice causes severe degradation in aerodynamic performance as compared with the clean airfoil. The objective of this study is to develop a numerical simulation strategy for predicting the particle trajectory around an MS-0317 airfoil in the test section of the NASA Glenn Icing Research Tunnel and to investigate the impingement characteristics of droplets on the airfoil surface. In particular, predictions of the mean velocity and turbulence diffusion using turbulent flow solver and Continuous Random Walk method were desired throughout this flow domain in order to investigate droplet dispersion. The collection efficiency distributions over the airfoil surface in simulations with different numbers of droplets, various integration time-steps and particle sizes were compared with experimental data. The large droplet impingement data indicated the trends in impingement characteristics with respect to particle size ; the maximum collection efficiency located at the upper surface near the leading edge, and the maximum value and total collection efficiency were increased as the particle size was increased. The extent of the area impinged on by particles also increased with the increment of the particle size, which is similar as compared with experimental data.

KSR-III 화염 편향기의 유동해석 (Flow Computation over KSR-III Flume Deflector)

  • 최성욱;김인선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.99-105
    • /
    • 2001
  • Flow computations have been conducted to study the impingement flowfield over the KSR-III flume deflector To validate Euler solver for the jet impingement flowfieid, the jet flow over a double wedge deflector have been calculated and showed reasonable agreement with experimental data. The transient flow behavior of flume over deflector have been investigated and the flume from the rocket nozzle proved to be getting out of the deflector safely and the thermal effect on the base region of rocket was not considerable.

  • PDF

Engineering Applications of Jet Impingement Associated with Vertical Launching System Design

  • Hong, Seung-Kyu;Lee, Kwang-Seop
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권2호
    • /
    • pp.67-75
    • /
    • 2002
  • In the course of missile system design, jet plume impingement is encountered in designing airframe as well as launchers, requiring careful investigation of its effect on the system. In the present paper, recent works on such topic are presented to demonstrate usefulness of CFD results in helping design the hardware. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. The main parameters are the ratio of the jet pressure to the ambient pressure and the distance between the nozzle and the wall. In the current application, the nozzle contour and the pressure ratio are held fixed, but the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. The same methodology is then applied to a complex vertical launcher system (VLS), capturing its flow structure and major design parameter. These applications involving jets are thus hoped to demonstrate the usefulness and value of CFD in designing a complex structure in the real engineering environment.

수정된 CIP방법을 이용한 벽면 충돌 후 액적의 퍼짐 현상에 대한 수치해석 연구 (Numerical Study on Droplet Spread Motion after impingement on the wall using improved CIP method)

  • 손소연;고권현;이성혁;유홍선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.109-114
    • /
    • 2010
  • Interface tracking of two phase is significant to analyze multi-phase phenomena. The VOF(Volume of Fluid) and level set are well known interface tracking method. However, they have limitations to solve compressible flow and incompressible flow at the same time. CIP(Cubic Interpolate Propagation) method is appropriate for considering compressible and incompressible flow at once by solving the governing equation which is divided up into advection and non-advection term. In this article, we analyze the droplet impingement according to various We number using improved CIP method which treats nonlinear term once more comparison with original CIP method. Furthermore, we compare spread radius after droplet impingement on the wall with the experimental data and original CIP original CIP method, and it reduces the mass conservation error which is generated in the numerical analysis comparison with original CIP method.

  • PDF

보텍스튜브를 이용한 충돌냉각의 실험적 연구 (An Experimental Investigation of Jet Impingement Cooling Using the Vortex Tube)

  • 신운철;김창수;배신철
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.8-15
    • /
    • 2007
  • The jet impingement cooling characteristics are investigated experimentally. The study is motivated by the potential application of local hot spot cooling by means of the vortex tube. The purposes of this research are to examine the effect of the nozzle-block spacing and flow rate. The results of jet through vortex tube is compared with ones of circular Jet. Flow visualization by the smoke-wire technique is also performed to investigate the flow structure. As the nozzle-block spacing is increased and flow rate decreased, the cooling effect of the Jet through the vortex tube decreases mere remarkably than that of the circular jet. So the cooling effect for the jet through the vortex tube is higher than that for the circular jet at $H/D{\leq}3$, $Q{\geq}10m^3/h$.

$k-{\varepsilon}-\bar{\upsilon{'}^2}$모델을 이용한 경사진 충돌제트의 유동 및 열전달 특성에 대한 수치해석적 연구 (A Numerical Study on Flow and Heat Transfer Characteristics for an Oblique Impingement Jet Using $k-{\varepsilon}-\bar{\upsilon{'}^2}$ Model)

  • 최영기;최봉준;이정희
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1183-1192
    • /
    • 2001
  • The numerical simulation has been conducted for the investigation of flow and heat transfer characteristics of an oblique impingement jet injected to a flat plate. The finite volume method was used to discretize the governing equations based on the non-orthogonal coordinate with non-staggered variable arrangement. The $textsc{k}$-$\varepsilon$-ν(sup)'2 turbulence model was employed to consider the consider the anisotropic flow characteristics generated by the impingement jet flow. The predicted results were compared with the experimental data and those of the standard $textsc{k}$-$\varepsilon$ turbulence model. The results of the $textsc{k}$-$\varepsilon$-ν(sup)'2 model showed better agreement with the experimental data than those of the standard $textsc{k}$-$\varepsilon$ model. In order to get the optimum condition, the flow and temperature fields were calculated with a variation of inclined angle($\alpha$=30$^{\circ}$~90$^{\circ}$) and the distance between the jet exit and impingement plate-to-diameter (L/D=4~10) at a fixed Reynolds number(Re=20,000). For a small L/D, the near-peak Nusselt numbers were not significantly effected by the inclined angle. The near-peak Nusselt numbers were not significantly affected by the L/D in the case of a large $\alpha$. The overall shape of the local Nusselt numbers was influenced by both the jet orifice-to-plate spacing and the jet angle.

충돌분무와 액막의 열전달 해석모델을 고려한 범용 열/유체 프로그램 NUFLEX의 개발 (DEVELOPMENT OF A GENERAL PURPOSE THERMO/FLUID FLOW ANALYSIS PROGRAM NUFLEX WITH WALL IMPINGEMENT AND HEAT TRANSFER ANALYSIS MODEL OF LIQUID FILM)

  • 김현정;노경철;유홍선;허남건
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.68-72
    • /
    • 2008
  • NUFLEX is a general purpose thermo/fluid flow analysis program which has various physical models including spray. In NUFLEX, spray models are composed of breakup and collision models of droplet. However, in case of diesel engine, interaction between wall-film and impingement model considering heat transfer is not coded in NUFLEX. In this study, Lee & Ryou impingement & wall-film model considering heat transfer is applied to NUFLEX. For the verification of this NUFLEX program, numerical results are compared with experimental data. Differences of film thickness and radius between numerical results and experimental data are within 10% error range. The results show that NUFLEX can be used for comprehensive analysis of spray phenomena.

추기노즐 충격판 주변의 급수가열기 동체 감육에 대한 유동해석 (A Flow Analysis in the surroundings of the Impingement Baffle of the Extracting Nozzle for Shell Wall Thinning of a Feedwater Heater)

  • 정선희;김경훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2977-2982
    • /
    • 2007
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle - installed downstream of the high pressure turbine extraction steam line - inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the down scale experimental data which effect on disclosing of the shell wall thinning of the high pressure feedwater heaters by porous plate.

  • PDF