• Title/Summary/Keyword: flow dynamics

Search Result 2,688, Processing Time 0.035 seconds

Rotor dynamic analysis of a tidal turbine considering fluid-structure interaction under shear flow and waves

  • Lass, Andre;Schilling, Matti;Kumar, Jitendra;Wurm, Frank-Hendrik
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.154-164
    • /
    • 2019
  • A rotor dynamic analysis is mandatory for stability and design optimization of submerged propellers and turbines. An accurate simulation requires a proper consideration of fluid-induced reaction forces. This paper presents a bi-directional coupling of a bond graph method solver and an unsteady vortex lattice method solver where the former is used to model the rotor dynamics of the power train and the latter is used to predict transient hydrodynamic forces. Due to solver coupling, determination of hydrodynamic coefficients is obsolete and added mass effects are considered automatically. Additionally, power grid and structural faults like grid fluctuations, eccentricity or failure could be investigated using the same model. In this research work a fast, time resolved dynamic simulation of the complete power train is conducted. As an example, the rotor dynamics of a tidal stream turbine is investigated under two inflow conditions: I - shear flow, II - shear flow + water waves.

Steady/unsteady Flow Analysis for Industrial Mixer (산업용 교반기 내부 정상/비정상 유동특성해석)

  • Chang, J.;Hur, N.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.460-465
    • /
    • 2001
  • In the present study, steady and unsteady flow characteristics inside an industrial mixer with flat turbine type impeller are studied. For the flow analysis, STAR-CD is used with an automatic mesh generator developed in the present study. flow results are compared to the an available experimental data to show validity or the present simulation.

  • PDF

The Remodelling of Hydraulic Structure in a Distribution Channel for Improving the Equality of the Flow Distribution (I): Design Using CFD Simulation (수리구조 개선을 통한 분배수로 균등분배 성능 향상에 관한 연구(I) : CFD를 이용한 설계 중심으로)

  • Park, No-Suk;Kim, Seong-Su;Park, Jong-Yoon;Yoon, Cheol-Hwan;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.571-579
    • /
    • 2007
  • This study was conducted to qualify the equality of the flow distribution from open channel between rapid mixing basin and flocculation basins in a domestic full-scale water treatment plant, and suggest a remedy for improving the equality. In order to evaluate the feasibility of the suggested remedy, computational fluid dynamics (CFD) technique are used, and for verifying the CFD simulation results wet tests were carried out for the pilot scale channel based on geometric similarity. From the results of CFD simulation and wet tests, it was investigated that the modification of hydraulic structure in the distribution channel, which is to install the longitudinal orifice baffle in flow direction, could improve the equality of the flow distribution. Also, in the case that Froude number is relatively small (Froude number <<0.03), the open ratio of orifices on the installed baffle hardly affects the equality of flow distribution.

A Study on the Flow Characteristics of Reed Valve with Variable Geometric Variations for Cryogenic Linear Expander (극저온 선형 팽창기용 리드밸브의 기하학적 형상변화에 따른 유동 특성 연구)

  • Jeong, Eun A;Kim, Ji U;Yeom, Han Kil;Yun, So Nam
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.48-53
    • /
    • 2015
  • This paper deals with the flow characteristics of a reed valve analyzed using computational dynamics(CFD) for optimal design. The seat sizes of the valve are modeled asØ6[mm] and Ø8[mm] to compare the flow characteristics. The inlet boundary condition is entered at 10[kPa], 15[kPa], 20[kPa], and 30[kPa] and the outlet boundary condition is set to the atmospheric pressure. The flow coefficient(C) and pressure loss coefficient(K) are calculated from the results of flow analysis. From the analysis results, it was confirmed that the flow coefficient of a reed valve having a seat size of Ø6[mm] is greater than that having a seat size of Ø8[mm], and the coefficient of pressure loss of a valve with a seat size of Ø6[mm] is lower than the Ø8[mm] size valve.

Hydrodynamic Effect on the Inhibition for the Flow Accelerated Corrosion of an Elbow

  • Zeng, L.;Zhang, G.A.;Guo, X.P.
    • Corrosion Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • The inhibition effect of thioureido imidazoline inhibitor (TAI) for flow accelerated corrosion (FAC) at different locations for an X65 carbon steel elbow was studied by array electrode and computational fluid dynamics (CFD) simulations. The distribution of the inhibition efficiency measured by electrochemical impedance spectroscopy (EIS) is in good accordance with the distribution of the hydrodynamic parameters at the elbow. The inhibition efficiencies at the outer wall are higher than those at the inner wall meaning that the lower inhibition efficiency is associated with a higher flow velocity, shear stress, and turbulent kinetic energy at the inner wall of the elbow, as well as secondary flow at the elbow rather than the mass transport of inhibitor molecules. Compared to the static condition, the inhibition efficiency of TAI for FAC was relatively low. It is also due to a drastic turbulence flow and high wall shear stress during the FAC test, which prevents the adsorption of inhibitor and/or damages the adsorbed inhibitor film.

Design Optimization of Mixed-flow Pump in a Fixed Meridional Shape

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.14-24
    • /
    • 2011
  • In this paper, design optimization for mixed-flow pump impellers and diffusers has been studied using a commercial computational fluid dynamics (CFD) code and DOE (design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser. Geometric design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffusers. The vane plane development was controlled using the blade-angle in a fixed meridional shape. First, the design optimization of the defined impeller geometric variables was achieved, and then the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Next, design optimizations of the defined diffuser shape variables were performed. The importance of the geometric design variables was analyzed using $2^k$ factorial designs, and the design optimization of the geometric variables was determined using the response surface method (RSM). The objective functions were defined as the total head and the total efficiency at the design flow rate. Based on the comparison of CFD results between the optimized pump and base design models, the reason for the performance improvement was discussed.

An Optimized Analysis of the Optimal Flow Uniformity in SCR Facility for Small-and Mid-Sized CHPs (중소형 열병합 발전용 SCR 장치의 유동 균일화를 위한 전산유체해석 최적화 연구)

  • Lee, Sang-Hwan;Shin, Sang-Woo;Kim, Jung-Sub
    • Plant Journal
    • /
    • v.9 no.3
    • /
    • pp.48-52
    • /
    • 2013
  • In this study, the internal flow field of SCR Denitrification Plant was simulated by using Computational Fluid Dynamics(CFD). In order to analyze the uniformity of flow field, an interpretation on the pre-existing facilities was performed, and some moot points were identified and compensated through this analysis. The compensatory methods include the installation of the Porous Plate below the bottom of the Baffle to create uniform flow and also, and the Guide Vane was also placed in the bend of pipe to guide the flow uniformly. Lastly, the Baffle was installed to deduct equalized space distribution of the air flow, initially flowed into the SCR Plant.

  • PDF

Developments and applications of a modified wall function for boundary layer flow simulations

  • Zhang, Jian;Yang, Qingshan;Li, Q.S.
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.361-377
    • /
    • 2013
  • Wall functions have been widely used in computational fluid dynamics (CFD) simulations and can save significant computational costs compared to other near-wall flow treatment strategies. However, most of the existing wall functions were based on the asymptotic characteristics of near-wall flow quantities, which are inapplicable in complex and non-equilibrium flows. A modified wall function is thus derived in this study based on flow over a plate at zero-pressure gradient, instead of on the basis of asymptotic formulations. Turbulent kinetic energy generation ($G_P$), dissipation rate (${\varepsilon}$) and shear stress (${\tau}_{\omega}$) are composed together as the near-wall expressions. Performances of the modified wall function combined with the nonlinear realizable k-${\varepsilon}$ turbulence model are investigated in homogeneous equilibrium atmosphere boundary layer (ABL) and flow around a 6 m cube. The computational results and associated comparisons to available full-scale measurements show a clear improvement over the standard wall function, especially in reproducing the boundary layer flow. It is demonstrated through the two case studies that the modified wall function is indeed adaptive and can yield accurate prediction results, in spite of its simplicity.