• 제목/요약/키워드: flow duration curve

검색결과 154건 처리시간 0.024초

자연하천의 무차원 유황곡선 (Dimensionless flow Duration Curve in Natural River)

  • 박상덕
    • 한국수자원학회논문집
    • /
    • 제36권1호
    • /
    • pp.33-44
    • /
    • 2003
  • 유황곡선은 하천유량의 변동성을 함축적으로 나타내고 있다. 본 연구는 인위적인 유량조절이 없는 자연하천의 무차원 유황곡선을 조사하여 보았다. 유황분석은 IHP대표유역과 대하천 주요 수위관측 지점의 수문자료를 토대로 수행하였다. 유황은 유역면적에 의존하나 유황계수는 판수계수를 제외하면 유역면적의 변화에 민감하지 않았으며 특히 풍수계수는 일정한 값을 나타내었다. 본 연구에서 평수량에 대한 갈수량 및 저수량의 비로 정의한 유황변동계수는 유역면적이 증가하면 작아지고 하천 경사의 증가에 따라 커진다. 저수유황변동에 비하여 갈수유황 변동이 유역면적의 변화에 영향을 받는 것으로 보여진다.

총량관리 단위유역 일평균유량의 시계열 누적 변화에 따른 유량지속곡선 차이 분석 (Analysis of the Difference of Flow Duration Curve according to the Cumulative Variation of the Daily Average Flow in Unit Watershed for TPLCs)

  • 황하선;이한필;서지연;최유진;박지형;신동석;이성준
    • 한국농공학회논문집
    • /
    • 제60권6호
    • /
    • pp.97-109
    • /
    • 2018
  • The LDC (Load Duration Curve) method can analyze river water quality changes according to flow rate and seasonal conditions. It is also possible to visually recognize whether the target water quality is exceeded or the size of the reduction load. For this reason, it is used for the optimal reduction of TPLCs and analysis of the cause of water pollution. At this time, the flow duration curve should be representative of the water body hydrologic curve, but if not, the uncertainty of the interpretation becomes big because the damaged flow condition is changed. The purpose of this study is to estimate the daily mean flow of the unit watershed using the HSPF model and to analyze the difference of the flow duration curves according to the cumulative daily mean flow rate using the NSE technique. The results show that it is desirable to construct the flow duration curve by using the daily average flow rate of at least 5 years although there is a difference by unit watershed. However, this is the result of the water bodies at the end of Han River basin watershed, so further study on various water bodies will be necessary in the future.

수질오염총량제도 유역의 수질 및 부하량 평가를 위한 웹기반 LDC 시스템의 적용 (Application of Web-based Load Duration Curve System to TMDL Watersheds for Evaluation of Water Quality and Pollutant Loads)

  • 강현우;류지철;신민환;최중대;최재완;신동석;임경재
    • 한국물환경학회지
    • /
    • 제27권5호
    • /
    • pp.689-698
    • /
    • 2011
  • In South Korea, Total Maximum Daily Load (TMDL) has been enforced since 2004 to restore and manage water quality in the watersheds. However, the appraisal of TMDL in South Korea has lots of weaknesses to establish the plan for recovery of water quality because it just evaluates the target water quality during the particular flow duration interval. In the United States, Load Duration Curve (LDC) method bas been widely used in the TMDL to evaluate the water quality and pollutant loads considering variation of stream flow. In a recent study, web-based Load Duration Curve system was developed to create the LDC automatically and provide the convenience of use. In this study, web-based Load Duration Curve system was applied in the Gapyeongcheon watershed using the daily flow and 8-day interval water quality data, and Q-L Rating Curve was used to evaluate the water quality and pollutant load in the watershed, also. As a result of study, water quality and pollutant load in Gapyeongcheon watershed were met with water quality standard and allocated load in the all flow durations. Web-based Load Duration Curve system could be applied to the appraisal of South Korean TMDL because it can be used to judge the impaired flow duration and build up the plan of load reduction, and it could enhance the publicity. But, web-based Load Duration Curve system should be enhanced through addition of load assessment tools such as Q-L rating curve to evaluate water quality and pollutant load objectively.

부하지속곡선을 이용한 중랑천의 유량 조건별 수질특성 평가 (Assessment of the Water Quality of Jungnang Stream by Flow Conditions Using Load Duration Curve)

  • 최경완;신경용;이형진;전상호
    • 한국환경보건학회지
    • /
    • 제38권5호
    • /
    • pp.438-447
    • /
    • 2012
  • Objective: The objective of this study was to suggest a method through which load duration curve was used to assess the achievement of water quality targets in accordance with the criteria for pollutant load depending on flow rate variation. Methods: The stage-discharge curve and flow duration curve of Jungnang Stream were deduced. Using water quality targets and measurement of the stream, the flow duration curve was also drawn. Based on these, the feasibility of achievement of water quality targets in respect to flow rate was assessed. Results: In terms of the load duration curve of the stream, it was observed that excess of criteria for concentrations of $BOD_5$, $COD_{Mn}$ and SS frequently occurred. On the other hand, when the flow rate was low, the concentrations of T-N and T-P exceeded the criteria. Conclusions: Through the load duration curve, the overall water quality of Jungnang Stream was understood. When the flow rate is high, management of point source of $BOD_5$, $COD_{Mn}$ and SS is needed to achieve water quality targets for Jungnang Stream. On the other hand, when the flow rate is low, the management of non-point source T-N and T-P is necessary to attain the water quality goal.

금강에 대한 대장균 부하 지속곡선의 개발 및 적용 (Development and Application of Coliform Load Duration Curve for the Geum River)

  • 김건하;윤재영
    • 한국물환경학회지
    • /
    • 제21권5호
    • /
    • pp.516-519
    • /
    • 2005
  • An useful protocol coiled load duration curve methodology to estimate contaminant loading to a river on an exceedance probability scale was developed in this research. The technique was further applied to estimate total coliform loading to the Geum River, using the daily mean flow rate and total coliform concentration data during January, 1996 and July, 2004 for the Gongju where an automated monitoring station is located. Drought flow of the Gongju (=50.3 cms) was equivalent to 40% on an exceedance probability scale. Load duration curve for total coliform loading at the Gongju was constructed. Standard duration curve was constructed with the water quality criteria for the class 2 (total coliform concentration = 1000 MPN/100 mL). By plotting load duration curve with standard duration curve, it could be revealed that water quality do not meet the desired water quality for 47% on an exceedance probability scale. If linearity between flow rate and coliform concentration is assumed, it can be interpretated that water quality exceeds desired criteria when average mean flow rate is over 51 cms.

금호강 유역의 대장균 부하지속곡선 개발 및 적용 (Development and Application of Coliform Load Duration Curve for the Geumho River)

  • 정강영;임태효;김경훈;이인정;윤종수;허성남
    • 한국물환경학회지
    • /
    • 제28권6호
    • /
    • pp.890-895
    • /
    • 2012
  • Duration curves describe the percentage of time that a certain water quality (total/fecal coliform (=TC/FC)) or discharge is exceeded. The curves methodology are usually based on daily records and are useful in estimating how many days per year and event will be exceeded. The technique was further applied to estimated TC/FC loading to the Geumho River, using the daily mean flow rate and TC/FC concentration data during January, 2001 and December, 2011 for the Geumhogang6 (=Seongseo water level station) where an automated monitoring station is located in Gangchang-bridge. Low flow of the Seongseo (=11.1 cms) was equivalent to 75.3% on an exceedance probability scale. Load Duration curve for TC/FC loading at the Seongseo was constructed. Standard load duration curve was constructed with the water quality criteria for class III (TC/FC concentration = 5000/1000 CFU/ 100 mL). By plotting TC/FC observed load duration curve with standard load duration curve, it could be revealed that water quality do not meet the desired water quality for 68.8/11.2% on an exceedance probability scale. IF linear correlation between flow rate and coliform concentration is assumed, it can be interpreted that water quality exceed desired criteria when daily average flow rate is over 11.9/109.9 cms.

유황곡선의 거동특성을 이용한 유역관리모형의 평가 (The Evaluation of Watershed Management Model using Behavioral Characteristics of Flow-duration Curve)

  • 김주철;이상진;신현호;황만하
    • 한국물환경학회지
    • /
    • 제25권4호
    • /
    • pp.573-579
    • /
    • 2009
  • The performance of Rainfall-Runoff Forecasting System (RRFS), the watershed management model for the Geum river basin, is evaluated based on the agreement between the simulated and observed hydrographs and the behavioral characteristics of the flow-duration curves. As a result, the simulated hydrographs are well agreed with the observed ones except high flow discharges. It is inferred that most of the errors in the simulated hydrographs are due to the misestimation of agricultural water use in $2^{nd}$ quarter and the discrepancy of the peak discharges in $3^{rd}$ quarter. It is however judged that RRFS would give the reliable runoff hydrographs from the point of view of continuous model application. And simulated flow-duration curves and flow-duration coefficients are also similar to the observed ones except flood flow region. From the above result it is confirmed that the construction of Yongdam dam improves the state of flow-duration curve at the Gongjoo station.

머신러닝 기법을 이용한 미계측 유역에 적용 가능한 지역화 유황곡선 산정 (Estimation of regional flow duration curve applicable to ungauged areas using machine learning technique)

  • 정세진;이승필;김병식
    • 한국수자원학회논문집
    • /
    • 제54권spc1호
    • /
    • pp.1183-1193
    • /
    • 2021
  • Low flow는 하천수의 공급관리 및 계획, 관개용수 등 다양한 분야에 영향을 미친다. 이러한 유황곡선을 산정하기 위해서는 30년 이상의 충분한 기간의 유량자료의 확보가 필수적이다. 하지만 국가하천 단위 이하의 하천의 경우 장기간의 유량자료가 없거나 중간에 일정기간 동안 결측된 관측소가 있어 하천별 유황 곡선을 산정하기에 한계가 있다. 이에 과거에는 미계측 유역의 유황을 예측하기 위해 다중회귀분석(Multiple Regression Analysis), ARIMA 모형 등 통계학적 기반의 기법들을 사용하였지만, 최근에는 머신러닝, 딥러닝 모형의 수요가 증가하고 있다. 이에 본 연구에서는 최신 패러다임에 맞는 머신러닝 기법인 DNN기법을 제시한다. DNN기법은 ANN기법의 단점인 학습과정에서 최적 매개변수 값을 찾기 어렵고, 학습시간이 느린 단점을 보완한 방법이다. 따라서 본연구에서는 DNN 모형을 이용하여 미계측 유역에 적용 가능한 유황곡선을 산정하고자 한다. 먼저, 유황곡선에 영향을 미치는 인자들을 수집하고 인자들 간의 다중공선성 분석을 통해 통계적으로 유의한 변수를 선정하여, 머신러닝 모형에 입력자료를 구축하였다. 통계적 검증을 통해 머신러닝 기법의 효용성을 검토하였다.

오염총량관리제 지원을 위한 유역모형 기반 유량지속곡선 및 부하지속곡선 활용방안 (Application of FDC and LDC using HSPF Model to Support Total Water Load Management System)

  • 이은정;김태근;금호준
    • 한국물환경학회지
    • /
    • 제34권1호
    • /
    • pp.33-45
    • /
    • 2018
  • In this study, we discussed the application of Watershed model and Load Duration Curves (LDC) in Total Water Load Management System. The Flow Duration Curves (FDC) and the LDC were generated using the results of the daily HSPF model and analyzed on monthly or yearly flow duration variability, and non-point pollutant discharge loads by entire flow conditions. As a result of the calibration and verification of the HSPF model, both the flow and the water quality were appropriately simulated. The simulated values were used to generate the Flow Duration Curve and the Load Duration Curve, and then the excess rate by entire flow conditions was analyzed. The point and non-point pollutant discharge loads for entire flow conditions were calculated. It is possible to evaluate the variability of water quality in specific flow duration through the curves reflecting the flow duration variability and to confirm the characteristics of the pollutant source. For a more scientific Total Water Load Management System, it is necessary to switch from a current system to a system that can take into account the entire flow conditions. For this, the application of the watershed model and load duration curve is considered to be the best alternative.

8일 유량 및 일유량 자료를 이용한 오염부하지속곡선의 변화 분석 (Analysis of Load Duration Curve Difference using 8 Day and Extended Daily Flow)

  • 권필주;류지철;김홍태;임경재
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.166-166
    • /
    • 2017
  • 현재 우리나라에서 많은 연구에 활용되고 있는 오염부하지속곡선(Load duration curve, LDC)은 단일 기준유량의 문제점을 개선하기 위해 전체 유량 범위를 고려한 수질오염총량관리제(Total Maximum Daily Loads, TMDL) 평가 기법으로 개발되었다(Choi et al., 2012). LDC를 이용해 목표수질 달성여부를 분석하기 위해서는 일유량자료를 바탕으로 유량지속곡선(Flow Duration Curve, FDC)의 작성이 선행되어야 하는데(Park and Oh, 2012), 365일 연속적으로 측정된 실측 자료를 이용하는 것이 가장 확실하고 정확한 방법이다. 그러나 현재 환경부에서는 총량관리 단위유역에서 8일 간격으로 실측 유량 및 수질 측정이 이루어지고 있고, 특히 주로 비강우 시에 측정이 이루어지고 있는 실정이기 때문에 고유량에 대한 모니터링 자료가 부족한 실정이다. 이 같은 이유로 많은 연구에서 불연속적인 평균 8일 간격 유량을 그대로 사용하거나 일유량자료를 확보하기 위해 다양한 방법을 이용하고 있다. 그러나 이러한 유량자료의 변동은 유랑지속곡선에 변화를 주고 결과적으로는 LDC를 이용한 목표수질 달성여부를 판단함에 있어 불확실성이 있다. 이에 본 연구의 목적은 환경부 총량측정망 8일유량자료와 이와 연계성이 있는 국토교통부 하천유량 측정망 일유량자료를 이용하여 각각의 LDC를 작성하고, 이러한 일유량과 8일유량 사용이 LDC를 이용하여 목표수질에 대한 오염부하 특성분석에 어떠한 영향을 미치는지 유량 조건별로 차이를 비교분석하는 데 있다.

  • PDF