• 제목/요약/키워드: flow duration

검색결과 709건 처리시간 0.026초

A study on water quality change by land use change using HSPF

  • Kim, Tae Geun;Choi, Kyoung-sik
    • Environmental Engineering Research
    • /
    • 제25권1호
    • /
    • pp.123-128
    • /
    • 2020
  • Non-point source pollutant load reductions were calculated using the Hydrologic Simulation Program-Fortran (HSPF) model under the assumption that landuse pattern was changed according to land purchases. Upon the simulation of non-point pollutant and areas with high land purchase ratios to select a buffer zone, the Namgang dam Reach 11, Imha dam Reach 10, and the Reach 136 watershed of the main river were found to rank high for the construction of buffer zones. Assuming that the forms of the purchased lands were changed to wetlands, biological oxygen demand (BOD) loads were changed through the HSPF model. No changes of BOD were present in the Namgang dam and the Imha dam watersheds. BOD loads in Reach 136 according to landuse change were analyzed through a flow duration analysis based on the total maximum daily loads of the United States. The flow duration analyses undertaken to examine changes in BOD of main river Reach 136 watershed indicated a shift of 0.64 kg/d from 3.16 to 2.52 during high flow. The change of BOD under the conditions of moist, mid-range and dry were 11.9%, 9% and 4.5%. At the low flow condition, the variation range in the BOD load was from 0.58 kg/d to 0.41 kg/d.

적설 및 융설의 영향을 고려한 장기유출 모의 (Long-Term Runoff Simulation in Consideration of Snow Pack and Snow Melt)

  • 김대근;정재웅;박재현;박창근
    • 상하수도학회지
    • /
    • 제21권3호
    • /
    • pp.265-272
    • /
    • 2007
  • This study uses the SWAT model to analyze the characteristics of long-term runoff at the Ssang-cheon Basin located in the city of Sokcho, which is located in the province of Gangwon. The study considers the effect of snow packing and snow melting in a runoff simulation. In this simulation, the study examines the need to introduce a snow pack and snow melt model to evaluate the water resources of the mountainous region of the Gangwon province. The findings of this study indicate that the runoff hydrograph that was produced approximates the true measured flow when the effect of the snow pack and snow melt are considered, compared to when they are not factored in. The analysis of the flow duration curve indicates that the stream flow largely increases when the effect of the snow pack and snow melt are considered. The wet stream flow was shown to increase by nearly 3% due to the melting effect, while the normal stream flow, low stream flow and drought stream flow were shown to increase by slightly more than 10%. Specifically, it was found that as the stream flow decreases, the effect of the snow pack and snow melt on the stream flow increases.

유량-부하량 관계식과 8일 간격 누적유량지속곡선을 이용한 오수천의 수체 손상도 분석 (Analysis of Water bady Damage at Osu Stream Using the Flow-Loading Equation and 8-Day Intervals Cumulative Flow Duration Curve)

  • 이영성;김영석;한성욱;서권옥;임창복;이영재;김경현;정강영
    • 한국환경과학회지
    • /
    • 제27권12호
    • /
    • pp.1179-1193
    • /
    • 2018
  • The purpose of this study at water quality pollutants to propose proper management method for the Osu-A unit watershed which is the influent tributary located upstream of the Sumjin -river among the 13 unit watersheds in the Sumjin-river water system. Analyzed the correlation between flow-pollution loading and the correlation between land use type, BOD and TP items, and analyzed 8-day intervals Cumulative Flow Duration Curve (CFDC) and Load Duration Curve (LDC) to evaluate water quality damage. As a result, both BOD and TP were larger than 1 and the concentration of water pollutants increased with increasing flow. BOD was positively correlated with Urban and Field, and TP was positively correlated with Field with 0.710. As a result of the LDC, BOD was analyzed that the target water quality was achieved with the excess rate of less than 50%, and TP exceeded the target water quality by 50.1%. BOD usually exceeded the standard value (exceedance probability 50%) at low flow zone and On the other hand, TP usually exceeded the standard value at high flow zone. Monthly BOD (April to June) and TP (May to August) exceeded the standard. Sewage Wastewater treatment and non-point pollution control is Osu-A unit watersheds are effective in improving BOD and TP.

유황별 유속측정 방법에 따른 유효성 연구 (Efficiency Study of Measurement Method by Flow Duration)

  • 함상인;이정환;김대영;하돈우;김윤수;정강영;이영재;김경현;김영석
    • 한국물환경학회지
    • /
    • 제34권5호
    • /
    • pp.462-469
    • /
    • 2018
  • There are differences in method and cycle of flow rate survey depending on purpose of the operating department. To verify and use results of flow data according to the purpose, flow data of the directly measured and tele monitoring system were compared to verify validity. Flow measurement in the Ministry of Environment is aimed at setting up a standard flow of target water quality for water quality management and securing flow data of low and normal water level seasons for water quality evaluation. In this study, correlation analysis result ($R^2$) of same time zone data by direct measurement and tele monitoring system (TMS) at Seombon D point, a unit watershed of Seomjin river, for six years ('10 ~ '15) according to implementation of Total Daily Maximum Load (TDML) was wading 0.716, boating 0.962 and on bridge 0.943, and effectiveness of measurement method was verified by characteristics of flow duration as a season of dry and low-water; normal and high water are appropriate for wading, boating, and on bridge respectively. Results revealed it is reasonable to use directly measured results using the wading and boating method for low water level and dry seasons, and TMS data for rainy seasons. It can be used important data for future policy decisions.

수질오염총량 단위유역의 유량조건별 수체 손상 평가를 위한 부하지속곡선 적용성 연구 (Application Load Duration Curve for Evaluation of Impaired Watershed at TMDL Unit Watershed in Korea)

  • 황하선;윤춘경;김지태
    • 한국물환경학회지
    • /
    • 제26권6호
    • /
    • pp.903-909
    • /
    • 2010
  • The purpose of this study was evaluated on the applicability of Load Duration Curve Method (LDC Method) using HSPF watershed model and sampling data for efficient TMDLs in Korea. The LDC Method was used for assessment pollutant characteristics in watershed and water quality variation in each water flow level. Load Duration Curve is applied for judge the level of impaired water-body and can be estimated the impaired level by pollutant, such as BOD, T-N, and T-P in this study depending on variation of stream flow. As a result, BOD, T-P was usually exceed the standard value at low flow and dry hydrologic period. Improvement of effluent concentration from WWTP and riparian buffer protection zone are effective to improve the water quality. T-N showed the worst condition at mid-range hydrologic period and moist hydrologic period. Therefore, soil erosion control program and BMPs for non-point source pollution control is effective for recovery the water quality, which can be useful method for management of water quality in the plan of recovery water quality spontaneously. Applicability of LDC Method was evaluated in the Nakbon A watershed. However, we need to consider more detailed and accumulated data set such as accurate GIS data and detail pollution data, and WWTP discharge water quality data for accurate evaluation of watershed. Overall, The LDC Method is adequate for evaluation of watersheds characteristics, and its application is recommended for watershed management and TMDL Implementation.

부하지속곡선을 이용한 유량 조건별 수질특성 평가 - 영본A 유역을 대상으로 - (Water Quality Characteristics Evaluation by Flow Conditions Using Load Duration Curve - in Youngbon A Watershed -)

  • 박진환;김갑순;정재운;황경섭;문명진;함상인;임병진
    • 환경영향평가
    • /
    • 제22권4호
    • /
    • pp.319-327
    • /
    • 2013
  • This study was conducted to identify runoff characteristics of pollutants using flow duration curve(FDC) and load duration curve(LDC) in Youngbon A watershed during 2009~2011. A flow rate and pollutant load in the study watershed were estimated by equation of stage-discharge and discharge-loads rating curve. From these methods, BOD, T-N, and T-P have evaluated whether water quality standards would have attained. Results showed that BOD loads of about 50% plotted above the LDC, while T-N and T-P loads of about 50% plotted below the curve. It means that BOD of about 50% have exceeded the water quality criteria, while T-N and T-P of about 50% have complied with the water quality standards. Meanwhile, BOD, TN and T-P loads plotted above the LDC of low flows, implying that they were more affected by point pollution sources than nonpoint pollution sources in the study watershed.

시계열 부하 곡선을 이용한 수체손상 평가 및 다변량 분석 -지석천 유역을 대상으로- (Evaluation of Impaired Waterbody and Multivariate Analysis Using Time Series Load Curve -in Jiseok Stream Watershed-)

  • 박진환;강태우;한성욱;백승권;강태구;유제철;김영석
    • 한국물환경학회지
    • /
    • 제33권6호
    • /
    • pp.650-660
    • /
    • 2017
  • In this study, pollutant emission characteristics by water damage period analyzed 11 items (water temperature, pH, DO, EC, BOD, COD, TOC, SS, T-N, T-P and flow) with load duration curve, time series load curve and factor analysis for three years (2014-2016). Load duration curve is applied to judge the level of impaired waterbody and estimate impaired level by pollutants such as BOD and T-P in this study depending on variation of stream flow. Water quality standard exceeded the flow of mid-range and low-range by flow condition evaluation using load duration curve. This watershed was influenced by point source more than non-point source. Cumulative excess rate of BOD and T-P kept water quality standard for all seasons (spring, summer, autumn and winter) except BOD 59% in spring. Water quality changes were influenced by pollutants of basic environmental treatment facilities and agricultural areas during spring and summer. Results of factor analysis were classified commonly first factor (BOD, COD, and TOC) and second factor (flow, water temperature and SS). Therefore, effects of artificial pollutants and maintenance water must be controlled seasonally and reduced relative to water damage caused by point pollution sources with effluent standard strengthened in the target watershed.

SWAT과 STARDEX를 이용한 극한 기후변화 사상에 따른 금강유역의 수문 및 유황분석 (Analysis of extreme cases of climate change impact on watershed hydrology and flow duration in Geum river basin using SWAT and STARDEX)

  • 김용원;이지완;김성준
    • 한국수자원학회논문집
    • /
    • 제51권10호
    • /
    • pp.905-916
    • /
    • 2018
  • 본 연구의 목적은 금강유역($9,645.5km^2$)을 대상으로 극한 기후변화 사상에 따른 수문 및 유황의 변동을 평가하는 것이다. 본 연구에서는 객관적인 극한 기후변화 사상을 평가하기 위해 강우관련 극한지수(STARDEX)를 적용하고, GCM 10개의 RCP 8.5 기후변화 시나리오에 대해 4개의 평가기간별(Historical: 1975~2005, 2020s: 2011~2040, 2050s: 2041~2070, 2080s: 2071~2100)로 분석하였다. 분석 결과 5개의 습윤(CESM1-BGC, HadGEM2-ES), 중간(MPI-ESM-MR) 건조(INM-CM4, FGOALS-s2) 극한 기후변화 사상 시나리오를 선정하여 SWAT 모형에 적용하였다. 2080s 기간에서 중간시나리오 대비 2080s의 증발산은 -3.2~+3.1 mm로 변화하였고, 2080s의 총 유출량은 $+5.5{\sim}+128.4m^3/s$ 변화하였다. 건조한 시나리오의 경우 2020s 중간시나리오대비 큰 변화를 보였다. 건조한 시나리오에서의 2020s의 증발산량은 -16.8~-13.3 mm의 변화를 보였고, 총 유출량은 $-264.0{\sim}132.3m^3/s$의 변화를 보였다. 유황 변동의 경우, 2080s 기간의 습윤한 시나리오에서 CFR은 +4.2~+10.5, 2020s 기간의 건조한 시나리오에서는 +1.7~2.6으로 변화 하였다. 극한 기후변화 시나리오를 적용한 금강유역의 수문인자의 변화에 따라 유황분석을 실시한 결과, INM-CM4는 극한 건조상태를 나타내기에 적절한 시나리오로 나타났고 FGOALS-s2는 유황변동이 큰 가뭄 상태 분석에 적절한 시나리오로 나타났다. HadGEM2-ES는 유황변동이 작게 나타났기 때문에 최대유량 분석 시 활용 가능한 시나리오로 평가되었고, CESM1-BGC의 경우 유황변동이 큰 것으로 나타나 극한 홍수 분석 시 적용할 수 있는 시나리오로 평가되었다.

환경부 8일 간격 유량·수질 관측자료와 분포형 모형을 이용한 연속오염부하곡선의 유도 (Derivation of Continuous Pollutant Loadograph using Distributed Model with 8-Day Measured Flow and Water Quality Data of MOE)

  • 김철겸;김남원
    • 한국물환경학회지
    • /
    • 제25권1호
    • /
    • pp.125-135
    • /
    • 2009
  • Reliable long-term flows by SWAT-K model were applied to the relationship between stream flow and pollutant load derived from 8-day measured data of Ministry of Environment (MOE) in order to obtain continuous loadograph and evaluate accuracy in water quality modeling for the Chungju dam watershed. The measured flow were compared with flow duration curve from the model, and it showed that measured values corresponded to the almost full range of stream flow conditions except at Odae A. And there was significant relationship ($R^2=0.60{\sim}0.97$) between measured flow and water quality load at all unit-watersheds. Applying this relationship to simulated flows, continuous loadograph was obtained and compared with modeled pollutant loads. Although there were some differences during some dry and flood seasons, those were not significant and overall trend showed a good agreement. From the results, we would be able to derive a continuous loadograph based on measured data at total maximum daily loads (TMDLs) unit-watersheds on a national scale, in which stream flow and water quality have been measured at 8-day intervals since 2004, and this could be helpful to utilize distributed water quality models with difficulty in calibrating and validating parameters from lack of measured data at present.

선택적 부족분 공급방식에 따른 댐 하류하천의 유황 변화 분석 (Flow duration change in downstream of reservoir by selective deficit supply method)

  • 최영제;박문형
    • 한국수자원학회논문집
    • /
    • 제55권12호
    • /
    • pp.1021-1030
    • /
    • 2022
  • 최근 우리나라의 물 관련 정책은 수량-수질-수생태 통합관리 방향으로 진행되고 있으며, 특히 하천의 자연성 회복이 주요한 이슈가 되고 있다. 이수기 댐 운영에 있어서는 가뭄, 물 수요 증가 등으로 용수공급 효과를 극대화시킬 수 있는 부족분 공급방식을 적용하고자하는 시도들이 이어지고 있다. 댐 운영에 부족분 공급방식을 적용하면 댐의 용수공급능력을 극대화 시킬 수는 있지만 하류 하천의 유량이 일정하게 유지된다는 특징이 있다. 자연하천은 오랜 시간동안 형성된 하나의 생태계로 유량의 변동성에 큰 영향을 받는다. 결국 부족분 공급방식을 적용한 댐 운영은 수량 관리에서는 효과적이지만 하천의 자연성 회복 및 수생태 측면에서는 부정적 영향을 미칠 수있다. 본 연구에서는 저수지 모의를 통해 보장량 공급방식, 부족분 공급방식, 선택적 부족분 공급방식 등의 댐 운영이 하류 하천 유황에 미치는 영향을 분석하고, 각 운영방식의 적용 효과에 대해 분석하고자 하였다. 그 결과 보장량 공급방식을 적용하면 하천의 유량 변동성은 크게 유지할 수 있으나 댐의 용수공급능력은 크지 않은 것으로 나타났다. 부족분 공급방식을 활용하면 용수공급능력을 증대시킬 수는 있으나 하류의 평수량과 갈수량의 차이가 매우 작아 유량의 변동성 측면에서는 매우 취약한 것으로 확인되었다. 선택적 부족분 공급방식을 적용할 경우 기간신뢰도를 95% 이상으로 유지하며, 하류 하천의 유황은 보장량 공급방식을 적용할 때와 유사하게 유지할 수 있는 것으로 분석되었다.