• 제목/요약/키워드: flow channel width

검색결과 261건 처리시간 0.03초

Restoration Modeling Analysis for Abandoned Channels of the Mangyeong River

  • Kim, Jae-Hoon;Julien, Pierre Y.;Ji, Un;Kang, Joon-Gu
    • 한국환경과학회지
    • /
    • 제20권5호
    • /
    • pp.555-564
    • /
    • 2011
  • This study examines the potential restoration of abandoned channels of the Mangyeong River in South Korea. To analyze the morphological changes and equilibrium conditions, a flow duration analysis was performed to obtain the discharge of 255 m3/s with a recurrence interval of 1.5 year. It is a gravel-bed stream with a median bed diameter of 36 mm. The reach-averaged results using HEC-RAS showed that the top width is 244 m, the mean flow depth is 1.11 m, the width/depth ratio is very high at 277, the channel velocity is 1.18 m/s, and the Froude number is also high at 0.42. The hydraulic parameters vary in the vicinity of the three sills which control the bed elevation. The total sediment load is 6,500 tons per day and the equivalent sediment concentration is 240 mg/l. The Engelund-Hansen method was closer to the field measurements than any other method. The bed material coarser than 33 mm will not move. The methods of Julien-Wargadalam and Lacey gave an equilibrium channel width of 83 m and 77 m respectively, which demonstrates that the Mangyeong River is currently very wide and shallow. The planform geometry for the Mangyeong River is definitely straight with a sinuosity as low as 1.03. The thalweg and mean bed elevation profiles were analyzed using field measurements in 1976, 1993 and 2009. The measured profiles indicated that the channel has degraded about 2 m since 1976. The coarse gravel material and large width-depth ratio increase the stability of the bed material in this reach.

LARGE EDDY SIMULATION OF TURBULENT CHANNEL FLOW USING ALGEBRAIC WALL MODEL

  • MALLIK, MUHAMMAD SAIFUL ISLAM;UDDIN, MD. ASHRAF
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권1호
    • /
    • pp.37-50
    • /
    • 2016
  • A large eddy simulation (LES) of a turbulent channel flow is performed by using the third order low-storage Runge-Kutta method in time and second order finite difference formulation in space with staggered grid at a Reynolds number, $Re_{\tau}=590$ based on the channel half width, ${\delta}$ and wall shear velocity, $u_{\tau}$. To reduce the calculation cost of LES, algebraic wall model (AWM) is applied to approximate the near-wall region. The computation is performed in a domain of $2{\pi}{\delta}{\times}2{\delta}{\times}{\pi}{\delta}$ with $32{\times}20{\times}32$ grid points. Standard Smagorinsky model is used for subgrid-scale (SGS) modeling. Essential turbulence statistics of the flow field are computed and compared with Direct Numerical Simulation (DNS) data and LES data using no wall model. Agreements as well as discrepancies are discussed. The flow structures in the computed flow field have also been discussed and compared with LES data using no wall model.

CALCULATION OF FLOW FIFLD IN A CHANNEL SUBJECTED TO PRESSURE-BASED BOUNDARY CONDITION

  • 박종흥;이재헌
    • ETRI Journal
    • /
    • 제10권4호
    • /
    • pp.118-126
    • /
    • 1988
  • A numerical analysis was performed for the flow field in the vertical channels consist of dummy cards and active cards to define the hydrodynamic role of dummy card which is often installed in electronic equipment between active cards to control the cooling air distribution. For a given velocity profile at the inlet and a pressure-based boundary condition at the outlet of the computation domain, the percentage of the flow rate distribution through active channel and dummy channel formed by an active card and dummy card, respectively, were investigated. As a result of present analysis, the pecentage of flow rate through active channel increases quadraticaly with the increase of the ratio of the height of barrier to the width of the dummy channel.

  • PDF

분자 동역학 시뮬레이션을 이용한 나노 스케일 채널 내에서의 유체 유동 및 열적 특성에 관한 연구 (Study on Fluid Flow and Thermal Characteristics in a Nanoscale Channel Using MD Simulation)

  • 최용석;김성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1880-1884
    • /
    • 2004
  • To analyze the fluid flow and thermal characteristics in a nanoscale system, the planar Poiseuille flow of a Lennar-Jones liquid through parallel plates formed by fixed atoms is studied using nonequilibrium molecular dynamics simulations. The role of important simulation parameters such as the channel width, the magnitude of external field, the temperatures of the top and bottom plates, and the interaction potential parameter between fluid and wall atoms, which affect flow patterns and heat transfer rate inside the channel, are investigated. Under the various simulation conditions, interesting phenomena deviated from the continuum predictions have found.

  • PDF

전자기기 냉각용 마이크로채널 워터블록의 냉각성능에 관한 실험적 연구 (An Experimental Study on Cooling Performance of Microchannel Waterblock for Electronic Devices Cooling)

  • 권오경;최미진;차동안;윤재호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2432-2437
    • /
    • 2007
  • The demand of high speed and miniaturization of electronic devices results in increased power dissipation requirement for thermal management. In this work, the effects of microchannel width, height and liquid flowrate on the cooling performances of microchannel waterblock are investigated experimentally. The microchannel waterblock considered ranged in width from 0.5 to 0.9 mm, with the channel height being nominally 1.7 to 9 times the width in each case. The experiments were conducted using water, over a liquid flow rate ranging from 0.2 to 2.0 lpm. The base temperature, thermal resistance and pressure drop increase with increasing of liquid flow rate. The measured thermal resistances ranged from 0.10 to 0.23 $^{\circ}C$/W for the channel 5.

  • PDF

Two-Phase Flow Regimes for Counter-Current Air-Water Flows in Narrow Rectangular Channels

  • Kim, Byong-Joo;Sohn, Byung-Hu;Siyoung Jeong
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.941-950
    • /
    • 2001
  • A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760mm long and 100mm wide test section with 2.0 and 5.0mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition become pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant.

  • PDF

Flow of a low concentration polyacrylamide fluid solution in a channel with a flat plate obstruction at the entry

  • Kabir, M.A.;Khan, M.M.K.;Rasul, M.G.
    • Korea-Australia Rheology Journal
    • /
    • 제16권2호
    • /
    • pp.63-73
    • /
    • 2004
  • Flow in a channel with an obstruction at the entry can be reverse, stagnant or forward depending on the position of the obstruction. These flow phenomena have potential applications in the control of energy and various flows in process engineering. Parameters that affect this flow inside and around the test channel are the gap (g) between the obstruction geometry and the test channel, the Reynolds number (Re) and the length (L) of the test channel. The influence of these parameters on the flow behavior was investigated using a flat plate obstruction at the entry of the channel. A low concentration polyacrylamide solution (0.018% by weight) showing a powerlaw fluid behavior was used as the fluid in this investigation. The flow phenomena were investigated by the velocity measurement and the flow visualization and their results were compared with numerical simulation. These results of low concentration polyacrylamide solution are also compared with the results of water published elsewhere (Kabir et al., 2003). The maximum reverse flow inside the test channel observed was 20% - 30% of the outside test channel velocity at a g/w (gap to width) ratio of 1 for Reynolds numbers of 1000 to 3500. The influence of the test channel length (L) and the Reynolds number (Re) on the velocity ratio ($V_i$/$V_o$: inside velocity/outside velocity in the test channel) are also presented and discussed here.

ICP 식각 시스템에 의한 초전도 스트립 라인의 임계 특성 분석 (Analysis of the Critical Characteristics in the Superconducting Strip Lines by ICP Etching System)

  • 고석철;강형곤;최효상;양성채;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제17권7호
    • /
    • pp.782-787
    • /
    • 2004
  • Superconducting flux flow transistor (SFFT) is based on a control of the Abrikosov vortex flowing along a channel. The induced voltage by moving of the Abrikosov vortex in an SFFT is greatly affected by the thickness, the width, and the length of channel. In order to fabricate a reproducible channel in the SFFT, we studied the variation of the critical characteristics of ${YBa}_2{Cu}_3{O}_7-\delta(YBCO)$ thin films with the etching time using ICP (Inductively coupled plasma) system. From the simulation, it was certified that the vortex velocity was increased in a low pinning energy at channel width 0,5 mm. The surfaces of YBCO thin film were etched by ICP etching system. We observed the etched channel surfaces by AFM (Atomic Force Microscope) and measured the critical current density with etching time. As a measured results, the etching thickness of channel should be optimized to fabricated a flux flow transistor with specified characteristics.

수제 설치에 의한 하도 안정성 평가 (Assessment of Channel Stability with Groynes)

  • 김기정;장창래;이경수
    • Ecology and Resilient Infrastructure
    • /
    • 제6권4호
    • /
    • pp.314-327
    • /
    • 2019
  • 본 연구에서는 본 연구에서는 2차원 수치모형을 적용하여 수제설치에 의한 흐름특성을 분석하고, 하도의 안정성을 평가할 수 있는 평가방법을 개발하였다. 2차원 수치모형의 결과는 관측자료와 1차원 모형의 결과와 비교하여, 그 적용성을 검토하였다. 평가 지표는 대상구간의 수리 및 지형학적 특성을 고려하여 하폭 대 수심의 비, 사행도, 하상경사, 하안 부근에서 유속, Shields number 등 5가지 항목으로 구성하였다. 낙동강의 달성보~강정고령보 구간의 수제 설치 전·후에 대해 평가지표를 적용하여 하도 안정성을 평가하였다. 평가 항목 중에서 하폭 대 수심의 비, 사행도, 하상경사는 하도의 안정성에 영향을 크게 주지 않는 것으로 평가되었다. 양안 부근에서 유속과 유사의 이동 특성을 결정하는 무차원 소류력인 Shields Number는 수제에 의하여 영향을 받으며, 수제의 수가 증가할수록 평가 값은 감소하고, 하안의 안정성은 증가하였다.

복단면인 직선수로 내 사행 저수로의 형태에 따른 흐름특성 연구 (A Study on Flow Characteristics according to Meandering Low Flow Channel Shape in the Compound Cross Section Typed Straight Channel)

  • 김성환;최계운
    • 한국습지학회지
    • /
    • 제19권4호
    • /
    • pp.484-490
    • /
    • 2017
  • 복단면 형태를 이루는 직선하도 내 사행하는 저수로의 형태에 따른 흐름 특성을 파악하기 위해, 국내 대표적인 하도 형태를 상정해 실내 수리모형을 실시해서 3차원 수치모의의 유효성을 확인하고, 이를 바탕으로 다른 유형의 하도 형태에 대해서도 수치모의로 검토를 실시하였다. 본 연구결과, 수리모형 실험에서 관측한 수심별 유속값을 이용하여 수치모형의 검정을 수행한 결과, 수치모의 결과와 충분히 일치하는 것으로 확인하였다. 이를 토대로, 추가적인 저수로 형태 변화에 따른 유동장에 대해 분석한 바에 따르면, 선행 연구들에서 검토된 이차류 현상이 발생하였음을 확인한 한편, 고수부지 내 유수단면적 확대에 따라 최고유속분포 지점이 이동하는 현상을 확인할 수 있었다. 궁극적으로 저수로 폭 변화가 흐름에 영향을 끼쳐 궁극적으로 하천설계에 중요한 요소인 수충부의 위치와 그 영향 정도를 파악하는 것이 필요하다고 판단된다.