• 제목/요약/키워드: flow cell

검색결과 3,147건 처리시간 0.043초

왕복유동을 이용한 확산증대 효과에 대한 연구 (Enhanced diffusion by using pulsating flow)

  • 황용신;이대영;김서영;최훈;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.538-541
    • /
    • 2008
  • This study considers the feasibility of the concentration control of the feul and air by oscillating flow in the channel of Fuel Cells. Fuel Cell Stack performance is largely influenced by the fuel and air concentration. If the fuel and air concentration is lower than stoichiometry 1.25 of the fuel and 2.5 of the air, its performance deteriorates seriously because of the fuel and air starvation. In this respect the optimization of the fuel and air concentration is crucially important to maximize fuel cell stack performance. In this work, the effects of oscillating actuation are studied to control the concentration. Two important nondimensional parameters are introduced, each of which represents either the oscillating frequency or the oscillating amplitude. It is shown how these factors affect the stack performance and the efficiency of the fuel cell stack stack.

  • PDF

인산형 연료전지의 가스유로방향 변화에 따른 열 및 물질전달해석 (Heat and Mass Transfer Analysis of Phosphoric Acid Fuel Cell According to Variation of gas Flow passage)

  • 전동협;정영식;채재우
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1338-1346
    • /
    • 1994
  • The objective of this study is to investigate the effect of various parameters, such as temperature, mean current density and voltage on the performance of phosphoric acid fuel cell (PAFC) by numerical analysis. Two types of flow passages, which are Z-parallel type and Z-counter type, are evaluated to obtain the best current density and temperature distribution. Parametric studies and sensitivity analysis of the PAFC system's operation in single cell are accomplished. A steady state simulation of the entire system is developed using nonlinear ordinary differential equations. The finite difference method and trial and error procedures are used to obtain a solution.

그라비어 셀의 형태에 따른 잉크 유동 시뮬레이션에 관한 연구 (Computer Simulation of Ink Flow In the Various Types of Gravure Cell)

  • 이순심;윤종태
    • 한국인쇄학회지
    • /
    • 제23권2호
    • /
    • pp.59-75
    • /
    • 2005
  • In gravure printing, the amount of ink from cells has a great effect on the qualities of final printed products. And printability of final products is determined by every kinds variables. Ink transfer process is not verified scientifically because gravure cell is of small size and print speed is rapid. Therefore in order to study of ink transfer mechanism, this study is using the Computational Fluid Dynamics Evaluation. Polyflow 3-10 simulation software is used for considering of non-Newtonian flow. Among the various factors, this study have dealt with gravure cell types used computer simulation in order to define distinctive features in ink flow and transfer. The results of simulation, it defined the distribution of pressure, speed, stream function, viscosity, shear rate during the gravure printing. It is fined out the difficulties and characteristics according to the shape of cell types. Through this study, the condition of gravure printing is depending on the print condition and characteristic of cells.

  • PDF

Six sigma 기법을 이용한 PEMFC Cathode 유로설계 최적화 (Optimization of Cathode Flow Field Design for a PEMFC with Six Sigma Technique)

  • 김선회
    • 한국수소및신에너지학회논문집
    • /
    • 제20권6호
    • /
    • pp.492-498
    • /
    • 2009
  • Six sigma methode was applied for optimization of flow field design of a proton exchange membrane fuel cell (PEMFC). The optimization between number of channel and channel/rib width was suggested in this paper with six sigma method. With the help of six sigma design of experiment (DOE) the number of experiments may be reduced dramatically. The fuel cell channel design optimization with results of these experiments with a 100 $cm^2$ serpentine flow field indicates a optimization data for a given constant operating conditions.

Micro-PIV Measurements of In Vitro Blood Flow in a Micro-Channel

  • Park, Cheol-Woo;Lee, Sang-Joon;Shin, Se-Hyun
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제1권2호
    • /
    • pp.30-35
    • /
    • 2003
  • Flow characteristics of blood flow in a micro channel were investigated experimentally using a micro-PIV (Particle Image Velocimetry) velocity field measurement technique. The main objective of this study was to understand the real blood flow in micron-sized blood vessels. The Reynolds number based on the hydraulic diameter of micro-channel for deionized (DI) water was about Re=0.34. For each experimental condition, 100 instantaneous velocity fields were captured and ensemble-averaged to get the spatial distributions of mean velocity. In addition, the motion of RBC (Red Blood Cell) was visualized with a high-speed CCD camera. The captured flow images of nano-scale fluorescent tracer particles in DI water were clear and gave good velocity tracking-ability. However, there were substantial velocity variations in the central region of real blood flow in a micro-channel due to the presence of red blood cells.

  • PDF

탄소섬유전극을 이용한 흐름형 전기분해조 제작 및 유기염료의 전기화학적 분해 연구 (Fabrication of Flow Cell Using Carbon Fiber and Electrochemical Decomposition Characteristics for Organic Dyes)

  • 박덕수
    • 한국환경과학회지
    • /
    • 제21권11호
    • /
    • pp.1371-1377
    • /
    • 2012
  • The simulated dyes solution containing Basic Red 46(BR 46), Yellow 21(Y 21), and Maxilon Blue 30(MB 30) were electrochemically oxidized using carbon fiber as an anode. The electrolyses were performed in a electrolytic flow cell constructed by Vycor glass tube. The carbon fiber was positioned in the inside of Vycor glass tube and platinum wire coiled around outside of tube as a cathode. Several operating variables, such as current, time, pH and flow rate of solution were studied. Increasing current density would lead to a corresponding increase in the dye removal efficiency 99.2 % at a 200 mA. The electrolyses time could also improve and removal efficiency was about 99 % after 1.5 hours of electrolyses. The removal efficiency was increased with the increase of flow rate of solution and optimum flow rate was 5 mL/min. THe pHs of solution affect the removal efficiency. The removal efficiency was decreased with the increase of pH of solution and optimum pH was 5.05 (0.1 M $KNO_3$).

딤플 패턴 최적화를 통한 고체산화물 연료전지 분리판의 흐름 균일도 향상 (Enhancing Flow Uniformity of Gas Separator for Solid Oxide Fuel Cells by Optimizing Dimple Patterns)

  • 쿠엔;이동근;안국영;김영상
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.331-339
    • /
    • 2021
  • This study presents a novel way to enhance uniformity of the gas flow inside the solid oxide fuel cell (SOFC), which is critically important to fuel cell performance, by using dimples. A pattern of dimple, which works as a flow distributor/collector, is designed at the inlet and outlet section of a straight channel gas separator. Size of the dimples and the gap between them were changed to optimize the flow uniformity, and any change in size or gap is considered as one design. The results show that some dimple patterns significantly enhance the uniformity compared to baseline, about 4%, while the others slightly reduce it, about 1%. Besides, the dimple pattern also affects to the pressure drop in the flow channel, however the pressure drop in all cases are negligible (less than 26.4 Pa).

분리판의 채널 높이에 따른 1 kWe 급 고체산화물 연료전지 스택 수치 해석 (Numerical Analysis in a 1 kWe SOFC Stack for Variation of the Channel Height in Separators)

  • 윤호원;김영진;이근우;김현진;윤경식;유지행
    • 한국수소및신에너지학회논문집
    • /
    • 제33권5호
    • /
    • pp.550-556
    • /
    • 2022
  • In this study, the flow uniformity was analyzed by performing numerical analysis on the 1 kWe internal manifold type solid oxide fuel cell stack according to the channel height of the separator. Also, it was examined by varying the fuel utilization rate and oxygen utilization rate. From the calculation results, we found that as the channel height of the separator decreased, the pressure drop increased exponentially. In addition, it was found that as the channel height of the separator decreased, the gas flow resistance inside the unit cell increased, and the flow resistance increased the pressure drop, thereby improving the flow uniformity inside the stack. Finally, the calculation results showed that as the fuel and oxygen utilization increased, the flow uniformity also improved.

Flow behavior of high internal phase emulsions and preparation to microcellular foam

  • Lee, Seong Jae
    • Korea-Australia Rheology Journal
    • /
    • 제16권3호
    • /
    • pp.153-160
    • /
    • 2004
  • Open microcellular foams having small-sized cell and good mechanical properties are desirable for many practical applications. As an effort to reduce the cell size, the microcellular foams combining viscosity improvers into the conventional formulation of styrene and water system were prepared via high internal phase emulsion polymerization. Since the material properties of foam are closely related to the solution properties of emulsion state before polymerization, the flow behavior of emulsions was investigated using a controlled stress rheometer. The yield stress and the storage modulus increased as viscosity improver concentration and agitation speed increased, due to the reduced cell size reflecting both a competition between the continuous phase viscosity and the viscosity ratio and an increase of shear force. Appreciable tendency was found between the rheological data of emulsions and the cell sizes of polymerized foams. Cell size reduction with the concentration of viscosity improver could be explained by the relation between capillary number and viscosity ratio. A correlative study for the cell size reduction with agitation speed was also attempted and the result was in a good accordance with the hydrodynamic theory.

와류 셀을 이용한 풍력블레이드 에어포일 주위 유동 제어 (Flow Control on Wind Turbine Airfoil with a Vortex Cell)

  • 강승희;김혜웅;유기완;이준신
    • 한국항공우주학회지
    • /
    • 제40권5호
    • /
    • pp.405-412
    • /
    • 2012
  • 높은 효율의 풍력터빈 블레이드을 위해 와류 셀이 장착된 에어포일의 정지상태 및 동실 속 상태에서의 유동제어 특성을 수치적으로 연구하였다. 수치기법은 Roe의 flux-difference-splitting을 사용한 격자점 중심 유한체적법과 이중시간 전진 기법을 사용하는 내재적 시간적분법을 사용하였다. 계산결과 와류 셀을 장착한 경우 셀 내부의 부압으로 인해 양항비증가를 얻을 수 있음을 확인하였다. 동실속의 경우 셀 내부의 와류에 의해 hysterisis 현상을 상당히 감소시킬 수 있음을 확인하였다.