• Title/Summary/Keyword: flow Interaction

Search Result 1,949, Processing Time 0.026 seconds

Aerodynamic Characteristics of Supersonic Jets Impinging on $60^{\cire}$ Wedge (꼭지각이 $60^{\cire}$인 쐐기에 충돌하는 초음속 제트의 공기역학적 특성)

  • 박종호;이택상;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.8-15
    • /
    • 2004
  • Supersonic jets impinging on $60^{\cire}$ wedge were investigated to obtain fundamental design data for jet deflector It was of interest to study flow phenomena such as shock interaction and separation induced by shear layer. Experiments using supersonic cold flow system were conducted for Schlieren flow visualization and measurement of surface pressure. Numerical results were compared with the experimental results. The major parameters are underexpansion ratio, distance from nozzle to apex and design Mach number. Flow conditions were obtained for the wedge shock to attach on or detach from the wedge. The dominant feature of flow-field is shock pattern induced by the Interaction between the wedge shock and the barrel shock.

Flow-induced Vibration Analysis for Cascades with Stator-rotor Interaction and Viscosity Effect (스테이터-로터 상호간섭 및 점성효과를 고려한 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Park, Oung;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1082-1089
    • /
    • 2006
  • In this study, advanced computational analysis system has been developed in order to investigate flow-induced vibration(FIV) phenomenon for general stator-rotor cascade configurations. Relative movement of the rotor with respect to stator is reflected by modeling Independent two computational domains. Fluid domains are modeled using the unstructured grid system with dynamic moving and local deforming methods. Unsteady, Reynolds-averaged Wavier-stokes equations with one equation Spalart-Allmaras and two-equation SST ${\kappa}-{\varepsilon}$ turbulence models are solved for unsteady flow problems and also relative moving and vibration effects of the rotor cascade are fully considered. A coupled implicit time marching scheme based on the Newmark integration method is used for computing the governing equations of fluid-structure interaction problems. Detailed vibration responses for different flow conditions are presented and then vibration characteristics are physically investigated in the time domain as computational virtual tests.

Energy Flow Finite Element Analysis for High Frequency Acoustic and Vibrational Prediction of Complicated Plate Structures Considering Fluid-Structure Interaction (복합평판구조물의 고주파수 대역 유체/구조 연성 소음진동예측을 위한 에너지흐름유한요소해석)

  • Tae-Heum Yoon;Young-Ho Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.20-30
    • /
    • 2023
  • In this paper, the Energy Flow Finite Element Analysis (EFFEA) was performed to predict the acoustic and vibrational responses of complicated plate structures considering improved Fluid-Structure Interaction (FSI). For this, a new power transfer relationship was derived at the area junction where two different fluids are in contact on both sides of the plate. In order to increase the reliability of EFFEA of complicated plate structures immersed in a high-density fluid, the corrected flexural wavenumber and group velocity considering fluid-loading effect were derived. As the specific acoustic impedance of the fluid in contact with the plate increases, the flexural wavenumber of the plate increases. As a result, the flexural group velocity is reduced, and the spatial damping effect of the flexural energy density is increased. Additionally, for the EFFEA of arbitary-shaped built-up structures, the energy flow finite element formulation for the acoustic tetrahedral element was newly performed. Finally, for validation of the derived theory and developed software, numerical applications of complicated plate structures submerged in seawater or air were successfully performed.

Flow Visualization of Flow Control of the Shock Wave/Turbulent Boundary-Layer Interactions (충격파와 난류 경계층 간섭유동 제어에서의 유동 가시화)

  • Lee,Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.32-40
    • /
    • 2003
  • An experimental research has been carried out for flow visualizations of the shock wave/turbulent boundary-layer interaction control utilizing the aeroelastic flaps, Spark shadowgraphs, kerosene-lampblack tracings for the surface streakline pattern, and interference fringe patterns over a thin oil-film applied at the downstream of the shock interactions have been obtained , Effects of variation of the shapes and thicknesses of the flaps are tested, and all the results are compared to the solid-wall reference case without flow-control mechanism , From the qualitative observation of the variation of skin friction utilizing the interference fringe patterns over the silicone oil-film, a strong spanwise variation of the skin friction with a narrow and long region of separation has been noticed near the centerline behind the shock structure, which phenomenon demonstrate a strong three-dimensionality of the shock interaction flows, Influence of the shape of the cavity under the flaps to the shock interaction is also tested, and it is observed that the shape of the cavity is not negligible.

A Study on the Relationships among Audience Motivation, Viewing Flow, Satisfaction, and Loyalty in Watching Interactive Drama: Focused on Chinese Audience (인터랙티브 드라마의 시청동기, 몰입, 시청만족도, 시청충성도 간 관계에 관한 연구: 중국 시청자를 중심으로)

  • Du, Zhen;Kim, Sung-Kyung;Limb, Seong-Joon
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.3
    • /
    • pp.157-170
    • /
    • 2022
  • Purpose - The purpose of this study is to understand the motivating factors of Chinese audience who watch the interactive drama, and suggest the effects of audience' motivation on viewing flow, satisfaction, and loyalty. Design/methodology/approach - To achieve the purpose of the study, a questionnaire survey on the Internet was conducted from September 26, 2021 to October 14, 2021, and data from 332 Chinese respondents were collected. Findings - Findings of this study are 1) audience motivation of watching the interactive drama is composed of 6 factors including the pursuit of entertainment and information, curiosity, interaction, sense of control and indirect experience; 2) the pursuit of entertainment and information, interaction and indirect experience have positive effects on viewing flow; 3) all six factors of audience motivation have positive effects on audience satisfaction; 4) four motivating factors including the pursuit of entertainment, curiosity, interaction and indirect experience have positive effects on audience loyalty. 5) viewing flow and audience satisfaction respectively has some partial mediating effects on the relationship between audience motivation and audience loyalty. Research implications or Originality - Results of this study suggest that in order to increase audience loyalty to interactive dramas, in addition to fulfilling the pursuit of entertainment, which is the basic motive for watching any drama, it is important to fulfill motivating factors related to the unique characteristics of interactive dramas such as curiosity, interaction, and indirect experience. In order for these motivating factors to lead to audience loyalty, it is more effective when viewing flow and audience satisfaction are accompanied.

Influence of Teachers' Ethical Awareness and Teaching Flow on Teacher-Preschooler Interaction (보육교사의 교직윤리의식과 교수몰입이 교사-영유아 상호작용에 미치는 영향)

  • Jeon, Yun-Hee;Lim, WonShin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.342-349
    • /
    • 2020
  • This study investigated the effects of preschool teachers' ethical awareness and teaching flow on the teacher-preschooler interaction based on the participation of 345 preschool teachers in Chungcheongnam-do and Gyeonggi-do. The collected data were analyzed by correlation analysis and hierarchical regression analysis. The results of the study were as follows: First, both teachers' ethical awareness and teaching flow were strongly correlated with the teacher-preschooler interaction, and the correlation between sub-variables was also significant. Second, analysis of the relative strength of teachers' ethical awareness and teaching flow in the explanation of the teacher-preschooler interaction revealed that intrinsic motivation as a sub-variable among teaching flow was the most prominent predictor of the teacher-preschooler interaction, followed by ethics for preschoolers among teachers' ethical awareness as well as specific plans among teaching flow. The findings of this study suggest future directions for teacher education based on newly identified factors affecting teacher-preschooler interactions, desirable teacher-preschooler interactions, and implications for improving childcare quality.

THE NUMERICAL STUDY ON THE SUPERSONIC INLET FLOW FIELD WITH A BUMP (Bump가 있는 초음속 흡입구 유동장의 수치적 연구)

  • Kim S. D.;Song D. J.
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.19-26
    • /
    • 2005
  • The purpose of this paper is the study on the characteristics of an inlet system with shock/boundary layer interactions by using various types of bumps which are substituted for the conventional bleeding system in supersonic inlet. in this study a comprehensive numerical analysis has been performed to understand the three-dimensional flow field including shock/boundary layer interaction and growth of turbulent boundary layer that might occur around a three-dimensional bump in a supersonic inlet. The characteristics of boundary layer seen in the current numerical simulations indicate the potential capability of a three-dimensional bump to control shock/boundary layer interaction in supersonic inlets.

Performance Analysis on Centrifugal Pump Using Impeller/Volute Interaction (임펠러/벌류트의 상호작용을 이용한 원심펌프의 성능예측)

  • Lee Gee-Soo;Choi Chang-Ho;Kim Jin-Han;Yang Soo-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.203-208
    • /
    • 2001
  • Any circumferential variations of the impeller exit flow conditions influences on the volute inlet flow conditions. All these interactions are strongly coupled phd affect consequently the performance of centrifugal pumps. In this paper, a commercial CFD code, which solves three-dimensional quasi-steady Wavier-Stokes equations with an impeller/volute interaction, is used for the prediction of a centrifugal pump performance. The simplified model of an impeller/volute interaction requires affordable computing time and provides relevant results. As a result, detailed flow structures such as pressure rise, recovery and loss mechanism on the centrifugal pumps are obtained. Especially, hydraulic performances are compared between the case of impeller only and the case of impeller with volute configuration. In addition, pump performance at off-design operation are observed and discussed.

  • PDF

Vibration Analysis of A 3-Dimensional Pipe Conveying Pulsating Fluid Flow (맥동하는 유체를 포함하는 3차원 배관 계의 진동 해석)

  • Seo, Young-Soo;Jeong, Weui-Bong;Yoon, Sang-Don
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.933-938
    • /
    • 2002
  • A pulsation of fluid in a pipe sometimes causes severe vibration of pipe. The inertia, damping and stiffness characteristics of pipe will be changed by the effect of fluid-structure interaction. The velocity and pressure of fluid will impose the force to a bended shape pipe. In this paper, a pipe with fluid flow is modeled by finite element method and the fluid force from pulsation is also modeled by the fluid dynamics. The vibration of pipe conveying pulsating fluid flow can be estimated by taking into consideration of fluid-structure interaction.

  • PDF

Vibration Analysis of A 3-Dimensional Pipe Conveying Pulsating Fluid Flow (맥동하는 유체를 포함하는 3차원 배관계의 진동해석)

  • Seo, Young-Soo;Jeong, Weui-Bong;Yoon, Sang-Don
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.391.1-391
    • /
    • 2002
  • A pulsation of fluid in a pipe sometimes cause severe vibration of pipe. The inertia, damping and stiffness characteristics of pipe will be changed by the effect of fluid-structure interaction. The velocity and pressure of fluid will impose the force to a bended shape pipe. In this paper, a pipe with fluid flow is modeled by finite element method and the fluid force from pulsation is also modeled by the fluid dynamics. The vibration of pipe conveying pulsating fluid flow can be estimated by taking into considering of fluid-structure interaction.

  • PDF