• Title/Summary/Keyword: flow control

Search Result 7,466, Processing Time 0.035 seconds

Study on Flow Characteristics of Electro-Rheological Fluids with Electric Field Control (전기장으로 제어되는 ER유체의 유동특성에 관한 연구)

  • Yun Shin-Il;Jang Sung-Cheol;Lee Hae-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.49-54
    • /
    • 2005
  • An experimental Investigation was performed to study the characteristics of Electro-Rheological fluid flow in a horizontal rectangular tube with or without D.C electric field control. First, the microscopic behavior of the ER suspension structure between rectangular tube brass electrodes for the stationary ER nut(i and flow of the ER fluid was investigated by flow visualization. The flow of the ER fluid between fluid rectangular tube was solved experimental using the constitutive equation for a Bingham fluid. ER fluid is made silicon oil mixed with $0.2wt\%$ starch having hydrous particles. Velocity distributions of the ER fluids were obtained by particle image velocimetry measuring those of the clusters using an image processing technique.

The Technology to Control the Flow Velocity of Non-Symmetric Rib-Web Shape Hot Forged Part (비대칭 리브-웨브형상 열간 단조품의 변형 속도 제어 기술)

  • 이영선;이정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.209-215
    • /
    • 2000
  • Precision forging technology that can control flow velocity of workpiece have been developed to minimize the amounts of machining. To get the uniform rib length, flow velocity distribution is needed to be estimated and controlled. Computer-aided design is known for very effective to estimate the deformation behavior and design the die for controlling the flow velocity. In this study, die design to control the deformation velocity are investigated using the DEFORM-2D about rib-web shape parts. Also we can get uniform rib length by enforcing the back pressure at end section of rib. The applied load of back pressure farming is lower than that of conventional forging. These results are analysed and confirmed by the experiment.

  • PDF

Ranking-based Flow Replacement Method for Highly Scalable SDN (고확장성 SDN을 위한 랭킹 기반 플로우 교체 기법)

  • Tri, Hiep T. Nguyen;Kim, Kyungbaek
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.143-146
    • /
    • 2015
  • Software Defined Network (SDN) separates control plane and data plane to achieve benefits such as centralized management, centralized provisioning, lower device cost and more flexibility. In SDN, scalability is an important issue. Centralized controller can be a bottle neck and many research tried to solve this issue on the control plan. However, scalability issue does not only happen in the control plane, but also happen in the data plane. In the data plane, flow table is an important component and its size is limited. In a large network operated by SDN technology, the performance of the network can be highly degraded because of the size limitation of a flow table. In this paper, we propose a ranking-based flow replacement method, Flow Table Management (FTM), to overcome this problem.

High-Precision Direct-Operated Relief Valve with a Variable Elasticity Spring (변탄성 스프링을 이용한 고정밀 직동형 릴리프 밸브)

  • Kim, SungDong
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.87-96
    • /
    • 2020
  • In this study, a variable elasticity spring was applied to improve the pressure control precision of conventional relief valves. The equilibrium equation of the forces acting on the valve poppet was derived; it is demonstrated that matching the elastic rate of the pressure-adjusting coil spring to the equivalent elastic rate of the flow force improved the pressure override. The procedures that were used to design the variable elasticity spring are presented, and some applications of the variable elasticity spring are also introduced. Computer simulations were used to analyze three cases: a poppet-closed flow force structure, a poppet-open flow force structure with a constant elasticity spring, and a structure containing a variable elasticity spring. It is confirmed that the pressure control precision of the relief valve can be significantly improved upon by applying a variable elasticity spring to the poppet-open flow force structure.

Evaluation of the Inherent Flow Coefficient of the Control Valve in the Liquid Propellant Rocket Engine (액체로켓 엔진 성능 보정용 제어밸브의 고유유량특성 계산)

  • Park, Soon-Young;Cho, Won-Kook;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.73-78
    • /
    • 2011
  • When a liquid rocket engine - specifically for the gas-generator cycle engine has throttle valves to control the thrust level and mixture ratio of the engine, it is possible to adjust the inherent flow characteristics of the control valves in order to secure a linearized correlation between the control-process-parameters like the thrust or mixture ratio of an engine and the throttle angle of valve. These linearities can reduce the complexity of the control process and make the process more explicit by ensuring the intuitive control. In this point, we proposed an algorithm within the frame of the in-house-developed program to obtain the control valves' inherent flow characteristics which satisfy the linearity, and calculated the sensitivities of control valves with respect to the throttle angle. Also, we compared the obtained inherent flow characteristics with the existed data and concluded the results are satisfactory.

Characteristics of Gap Flow of a 2-Dimensional Horn-Type Rudder Section (2차원 혼 타 단면의 간극유동 특성에 대한 연구)

  • Choi, Jung-Eun;Chung, Seok-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.101-110
    • /
    • 2007
  • Recently, rudder erosion due to cavitation frequently has occurred at large high speed container carriers. Especially, in the case of a horn-type rudder, the rudder erosion is severe around a gap. The gap-flow characteristics are investigated through a computational method to understand the effects of a gap on the cavitation and rudder efficiency. A viscous flow theory utilizing a cavitation model is applied to calculate the flow around idealized 2-dimensional rudder sections in a full scale. The effects of gap clearance and flow-control projection are also investigated. From the computational results, the mass flow rate through a gap is found to be one of the important parameters to affect the cavitation and rudder efficiency.

Flow Visualization of a jet generated by a sweeping jet actuator (유체 진동기에 의해 생성된 제트의 유동가시화)

  • Park, Tongil;Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.22-27
    • /
    • 2016
  • A sweeping jet actuator (SJA) is an instrument generating pulsing jets with no moving elements. Because of its simple design and high durability to shock and vibration, SJA has recently drawn increasing attention for the application to flow control such as aerodynamic control of a wing and thrust vectoring of a jet engine. However, experimental and numerical studies on SJA have been limited to internal flow structure of SJA. In this study, we investigated the flow structure and its variation in the outlet of SJA. We carried out the experiment to understand the flow structures using PIV (Particle Image Velocimetry). The flow structure varies with a degree of the outlet and volume flow rate. There is leaking process during half jetting cycle. The process of the main jet can occur because the jet moving time increased from one side to the other side.

Evaluation of the Effect on the Valve Flow Coefficient by Attached Fitting (밸브 후단 피팅에 따른 밸브 용량계수의 영향 평가)

  • Kang, Seung-Kyu;Lee, Won-Sik;Yoon, Joon-Yong;Min, Kyung-Wha
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.29-37
    • /
    • 2003
  • This study was undertaken to verify the effect of flow coefficient when a globe control valve was attached by different type of fitting. The valve flow coefficient is usually determined by measuring the flow rate and the pressure drop with the connection of straight pipe through the valve. The effect of different fitting that is mounted on the downstream of the valve is studied. Four types of fittings and three distances between the valve and a downstream fitting are compared parametrically to investigate the effect on the flow coefficient of it. Measured flow coefficient and numerically predicted value by using computational fluid dynamics were compared in detail. It is concluded that the flow coefficient is reduced if the fitting is attached after a valve, but the effect of different type of fitting is not crucial.

Development of an Ultrasonic Gas Flow Meter Using Transit Time Difference (전달 시간차 방식 초음파 가스 유량계)

  • 박상국;황원호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.707-713
    • /
    • 2003
  • We investigate the ultrasonic gas flow meter for the measurement of gas volume quantity, which passing through pipe, using the transit time difference method. We have designed a receiving system of an ultrasonic signal and hardware system of a flow meter Also, we have designed an experimental system for the characteristic test and calibration of a gas flow meter system. We have developed an ultrasonic gas flow meter, which has a measurement uncertainty within $\pm$ 1.7 %. For the test, we have compared our system with a difference pressure type flow meter for a few months in the real field. Through the test, we have confirmed that our system have a good reliability and durability. Also, we have confirmed that our system follows very well the variation of gas volume quantity, which was measured by a difference pressure type flow meter.

UPFC Controller Design and Simulation Model (UPFC의 제어기 설계와 시뮬레이션 모델)

  • 한병문;박덕희;박지용
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.49-54
    • /
    • 1998
  • This paper describes a simulation model to analyze the dynamic performance of Unified Power Flow Controller, which adjust flexibly the active and reactive power flow through the ac transmission line. The basic operation was analyzed in detail using equivalent circuits and the design of control system was developed using vector control method. A simulation model with EMTP code was conceived to evaluate the performance of the Unified power Flow Controller. The simulation results show that the developed simulation model is very effective to analyze the dynamic performance of the Unified Power Flow Controller.

  • PDF