• Title/Summary/Keyword: floor vibration

Search Result 695, Processing Time 0.026 seconds

Three-dimensional structural health monitoring based on multiscale cross-sample entropy

  • Lin, Tzu Kang;Tseng, Tzu Chi;Lainez, Ana G.
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.673-687
    • /
    • 2017
  • A three-dimensional; structural health monitoring; vertical; planar; cross-sample entropy; multiscaleA three-dimensional structural health monitoring (SHM) system based on multiscale entropy (MSE) and multiscale cross-sample entropy (MSCE) is proposed in this paper. The damage condition of a structure is rapidly screened through MSE analysis by measuring the ambient vibration signal on the roof of the structure. Subsequently, the vertical damage location is evaluated by analyzing individual signals on different floors through vertical MSCE analysis. The results are quantified using the vertical damage index (DI). Planar MSCE analysis is applied to detect the damage orientation of damaged floors by analyzing the biaxial signals in four directions on each damaged floor. The results are physically quantified using the planar DI. With progressive vertical and planar analysis methods, the damaged floors and damage locations can be accurately and efficiently diagnosed. To demonstrate the performance of the proposed system, performance evaluation was conducted on a three-dimensional seven-story steel structure. According to the results, the damage condition and elevation were reliably detected. Moreover, the damage location was efficiently quantified by the DI. Average accuracy rates of 93% (vertical) and 91% (planar) were achieved through the proposed DI method. A reference measurement of the current stage can initially launch the SHM system; therefore, structural damage can be reliably detected after major earthquakes.

Optimal assessment and location of tuned mass dampers for seismic response control of a plan-asymmetrical building

  • Desu, Nagendra Babu;Dutta, Anjan;Deb, S.K.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.459-477
    • /
    • 2007
  • A bi-directional tuned mass damper (BTMD) in which a mass connected by two translational springs and two viscous dampers in two orthogonal directions has been introduced to control coupled lateral and torsional vibrations of asymmetric building. An efficient control strategy has been presented in this context to control displacements as well as acceleration responses of asymmetric buildings having asymmetry in both plan and elevation. The building is idealized as a simplified 3D model with two translational and a rotational degrees of freedom for each floor. The principles of rigid body transformation have been incorporated to account for eccentricity between center of mass and center of rigidity. The effective and robust design of BTMD for controlling the vibrations in structures has been presented. The redundancy of optimum design has been checked. Non dominated sorting genetic algorithm (NSGA) has been used for tuning optimum stages and locations of BTMDs and its parameters for control of vibration of seismically excited buildings. The optimal locations have been observed to be reasonably compact and practically implementable.

Analytical Study on Strength Resistance of Steel Beams with Stiffened Ends by Reinforced Concrete -difference of behavior with fixing plate- (복합보의 내력성능에 관한 연구 -정착판의 설치에 의한 거동의 차이-)

  • Kim, Seong Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.681-690
    • /
    • 2000
  • Recently, a long span is often required for the spacious building. Therefore the increase of stiffness is necessary to prevent floor vibration and control deformation of the building under earthquake and wind loads. For this purpose, steel beams with stiffened ends by reinforced concrete are effective. To realize such an effective reinforcement method, the smoothening of bending and shear stress transmission at the boundaries between middle-part of the steel beam and both end-parts of the steel beam with stiffened ends by reinforced concrete is required. Therefore, the fixed plate was installed at the boundary with the view of transferring the stress smoothly. This paper evaluates the method of effective transmission of bending and shear stress through the numerical analysis that is based on advanced experimental tests.

  • PDF

Analysis of a Building Structure with Added Viscoelastic Dampers

  • Lee, Dong-Guen;Hong, Sung-Il;Kim, Jin-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.27-35
    • /
    • 1998
  • Steel structures with added viscoelastic dampers are analysed to investigat their behavior under earthquake excitation. The direct integration method, which produces exact solution for the non-proportional or non-classical damping system, is used throughout the analysis. The results from modal strain energy method are also provided for comparison. Then a new analytical a, pp.oach, based on the rigid floor diaphragm assumption and matrix condensation technique, is introduced, and the results are compared with those obtained from direct integration method and modal strain energy method. The well known phenomenon, that the effectiveness of the viscoelastic dampers depends greatly on the location of the dampers, is once again confirmed in the analysis. It is also found that the modal strain energy method generaly underestimates the responses obtained from the direct integration method, especially when the dampers are placed in only a part of the building. The proposed method turns out to be very efficient with considerable saving in computation this and reasonably accurate considering the reduced degrees of freedom.

  • PDF

Evaluation of Vibration Control Performance of Outrigger Damper System for Tall Buildings Subjected to Seismic Load (아웃리거 댐퍼시스템의 고층건물 지진응답제어 성능 평가)

  • Yoon, Sung-Wook;Lee, Lyeong-Kyeong;Kim, Kwang-Il;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.95-104
    • /
    • 2016
  • Recently, the concept of damped outrigger system has been proposed for tall buildings. But, structural characteristics and design method of this system were not sufficiently investigated to date. In this study, the dynamic response control performance of outrigger damper has been analyzed. To this end, a simplified analysis model with outrigger damper system has been developed. Use the El Centro seismic(1940, NS) analysis was performed. Analysis results, on the top floor displacement response to the earthquake response, did not have a big effect. However, acceleration response control effect was found to be excellent. The increase of outrigger damper capacity usually results in the improved control performance. However, it is necessary to select that proper stiffness and damping values of the outrigger damper system because, the outrigger damper having large capacity is result in heavy financial burden.

Dynamic Characterization of Sub-Scaled Building-Model Using Novel Optical Fiber Accelerometer System

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.601-608
    • /
    • 2011
  • This paper presents the damage assessment of a building structure by using a novel optical fiber accelerometer system. Especially, a sub-scaled building model is designed and manufactured to check up the feasibility of the optical fiber accelerometer for structural health monitoring. The novel accelerometer exploits the moir$\acute{e}$ fringe optical phenomenon and two pairs of optical fibers to measure the displacement with a high accuracy, and furthermore a pendulum to convert the displacement into acceleration. A prototype of optical fiber accelerometer system has been successfully developed that consists of a sensor head, a control unit and a signal processing unit. The building model is also designed as a 4-story building with a rectangular shape of $200{\times}300$ mm of edges. Each floor is connected to the next ones by 6 steel columns which are threaded rods. Basically, a random vibration test of the building model is done with a shaker and all of acceleration data is successfully measured at the assigned points by the optical fiber accelerometer. The experiments are repeated in the undamaged state and the damaged state. The comparison of dynamic parameters including the natural frequencies and the eigenvectors is successfully carried out. Finally, the optical fiber accelerometer is proven to be prospective to evaluate dynamic characteristics of a building structure for the damage assessment.

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.

System identification of high-rise buildings using shear-bending model and ARX model: Experimental investigation

  • Fujita, Kohei;Ikeda, Ayumi;Shirono, Minami;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.843-857
    • /
    • 2015
  • System identification is regarded as the most basic technique for structural health monitoring to evaluate structural integrity. Although many system identification techniques extracting mode information (e.g., mode frequency and mode shape) have been proposed so far, it is also desired to identify physical parameters (e.g., stiffness and damping). As for high-rise buildings subjected to long-period ground motions, system identification for evaluating only the shear stiffness based on a shear model does not seem to be an appropriate solution to the system identification problem due to the influence of overall bending response. In this paper, a system identification algorithm using a shear-bending model developed in the previous paper is revised to identify both shear and bending stiffnesses. In this algorithm, an ARX (Auto-Regressive eXogenous) model corresponding to the transfer function for interstory accelerations is applied for identifying physical parameters. For the experimental verification of the proposed system identification framework, vibration tests for a 3-story steel mini-structure are conducted. The test structure is specifically designed to measure horizontal accelerations including both shear and bending responses. In order to obtain reliable results, system identification theories for two different inputs are investigated; (a) base input motion by a modal shaker, (b) unknown forced input on the top floor.

COMPARISON OF RIDE COMFORTS VIA EXPERIMENT AND COMPUTER SIMULATION

  • Yoo, W.S.;Park, S.J.;Park, D.W.;Kim, M.S.;Lim, O.K.;Jeong, W.B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.309-314
    • /
    • 2006
  • In this paper, the ride comfort from a computer simulation was compared to the experimental result. For measuring ride comfort of a passenger car, acceleration data was obtained from the floor and seat during highway running with different speeds. The measured acceleration components were multiplied by the proper weighting functions, and then summed together to calculate overall ride values. Testing several passenger cars, the ride comforts were compared. In order to investigate the effect of vibration signals on the steering wheel, an apparatus to measure the vibrations and weighting functions on the steering wheel were designed. The effect of the steering accelerations on the ride comfort were investigated and added for the overall ride comfort. For the computer simulations, Korean dummy models were developed based on the Hybrid III dummy models. For the Korean dummy scaling, the national anthropometric survey of Korean people was used. In order to compare and check the validity of the developed Korean dummy models, dynamic responses were compared to those of Hybrid III dummy models. The computer simulation using the MADYMO software was also compared to the experimental results.

Seismic response control of a building complex utilizing passive friction damper: Analytical study

  • Ng, C.L.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.85-105
    • /
    • 2006
  • Control of structural response due to seismic excitation in a manner of coupling adjacent buildings has been actively developed, and most attention focused on those buildings of similar height. However, with the rapid development of some modern cities, multi-story buildings constructed with an auxiliary low-rise podium structure to provide extra functions to the complex become a growing construction scheme. Being inspired by the positively examined coupling control approach for buildings with similar height, this paper aims to provide a comprehensive analytical study on control effectiveness of using friction dampers to link the two buildings with significant height difference to supplement the recent experimental investigation carried out by the writers. The analytical model of a coupled building system is first developed with passive friction dampers being modeled as Coulomb friction. To highlight potential advantage of coupling the main building and podium structure with control devices that provide a lower degree of coupling, the inherent demerit of rigid-coupled configuration is then evaluated. Extensive parametric studies are finally performed. The concerned parameters influencing the design of optimal friction force and control efficiency include variety of earthquake excitation and differences in floor mass, story number as well as number of dampers installed between the two buildings. In general, the feasibility of interaction control approach applied to the complex structure for vibration reduction due to seismic excitation is supported by positive results.