• Title/Summary/Keyword: floor stiffness

Search Result 229, Processing Time 0.039 seconds

Characteristics of the floor impact sound by water to binder ratio of mortar (마감모르타르 물결합재비에 따른 바닥충격음 특성 변화)

  • Lee, Won-Hak;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.671-677
    • /
    • 2021
  • The present study aims to investigate the influence of the water to binder ratio of finishing mortar on the floor impact sound of apartments. For this, same resilient materials Expanded Polystyrene (EPS) with constant dynamic stiffness and different mortar layers with 52 %, 66 % and 72 % water to binder ratio respectively were used to build floating floor structures on which floor impact sounds were measured in standard testing facilities. As a result, it was found that light-weight floor impact sound was transmitted well when the water to binder ratio was 52% due to the high density. In case of heavy-weight floor impact sounds, since water to binder ratio of finishing mortar becomes higher as the weight of upper layer of resilient material lighter, it was shown that the natural frequency of floating floor structure moves to 63 Hz bandwidth which eventually cause a higher sound pressure level of floor impact sound. Thus, effect of water to binder ratio of mortar on the heavy-weight floor impact sounds was investigated.

A Seismic Behavior of a 3-dimensional Irregular Setback Structure (3차원 비정형 Setback 구조물의 지진 거동)

  • 문성권
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.105-113
    • /
    • 2000
  • Seismic behavior of 3-dimensional setback structures showing abrupt reductions of the floor size within the structure height and the effect of in-plane deformations of floor slabs on the seismic behavior of those structures are investigated. To find out general seismic behavior of 3-dimensional setback structures two parameters, level of setback(L/sub s/) and degree of setback(R/sub s/) are used. Analysis results obtained from forty eight setback structures show that a sudden change in story shear near setback level is occurred for irregular setback structures. The effect of in-plane deformation of floor slabs on the seismic behavior of setback structures is greatly influenced by the arrangement of lateral load resisting elements and it is more pronounced for frame-shear wall system showing large difference in stiffness among the lateral load resisting elements. The in-plane deformation of floor slabs results in reduced base shear, especially for FW-type structures with L/sub s/=1.0. Also, it brings about reduced story shear for the lateral load resisting element with shear wall and increase in story shear lot the lateral load resisting element without shear wall. The in-plane deformation of floor slabs at the base portion and/or tower portion due to difference in stiffness among the lateral load resisting elements brings about increment of floor displacements at all floor level.

  • PDF

The dynamic stiffness of resilient materials for floor impact sound according to temperature change (온도변화에 따른 바닥충격음 완충재의 동탄성계수 변화)

  • Yeon, Junoh;Goo, Heemo;Lee, Sungchan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.338-342
    • /
    • 2018
  • In order to solve the floor impact sound problem in the upper and lower floors, the Ministry of Land, Transport and Maritime Affairs also notifies the physical properties of the resilient material affecting the floor impact sound level. The dynamic modulus of elasticity and the loss factor before and after heating are most related to the floor impact noise, especially for the cushioning material. Therefore, in this study, the rate of change with respect to the dynamic modulus and loss factor with temperature change was examined by increasing $10^{\circ}C$ by $10^{\circ}C$ from the temperature condition of $70^{\circ}C$ specified in the standard. The dynamic modulus of elasticity and the loss modulus were measured by using the pulse excitation method for eight kinds of samples. The calculation method was calculated by the time series analysis method using the damped vibration waveform.

Efficient Analysis of Building Structures with a Rigid Floor System (주상복합건물의 효율적인 지진해석)

  • 황현식;이동근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.79-88
    • /
    • 1997
  • Very stiff floor system in a residential-commercial building causes some problems in the numerical analysis procedure due to significant difference in stiffness with adjacent elements. Static analysis of structure with a stiff transfer-floor can be performed approximately in two steps for upper and lower parts for the structure. However, it is impossible to perform dynamic analysis in two steps with separate models. An efficient method for dynamic analysis of a structure with a right floor system is proposd in this study. The matrix condensation technique is employed to reduce the degree of freedom for upper and lower parts of the structure and a beam elements with rigid bodies at both ends are introduce to model the rigid floor system. Efficiency and accuracy of the proposed method are verified through analysis of several example structures.

  • PDF

Light-gauge composite floor beam with self-drilling screw shear connector: experimental study

  • Erdelyi, Szilvia;Dunai, Laszlo
    • Steel and Composite Structures
    • /
    • v.9 no.3
    • /
    • pp.255-274
    • /
    • 2009
  • This paper presents an experimental study of a newly developed composite floor system, built up from thin-walled C-profiles and upper concrete deck. Trapezoidal sheeting provides the formwork and the fastening of the sheet transmits the shear forces between the C-profiles and the deck. The modified formation of the standard self-drilling screw in the beam-to-sheet connection is applied as shear connector. Push-out tests are completed to study the composite behaviour of the different connection arrangements. On the basis of the test results the behaviour is characterized by the observed failure modes. The design values of the connection stiffness and strength are calculated by the recommendation of Eurocode 4. In the next phase of the experimental study six full-scale composite beams are tested. The global geometry is based on the proposed geometry of the developed floor system. The applied shear connections are selected as the most efficient arrangements obtained from the push-out tests. The experimental behaviour of the composite beams are discussed and evaluated. As a conclusion of the experimental study the Eurocode 4 plastic design method is validated for the developed composite floor.

An experimental study of the behaviour of double sided welded plate connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.1-22
    • /
    • 2018
  • Multi-storey precast concrete skeletal structures are assembled from individual prefabricated components which are erected on-site using various types of connections. In the current design of these structures, beam-to-column connections are assumed to be pin jointed. Welded plate beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is at present limited information concerning their detailed structural behaviour under bending and shear loadings. The experimental work has involved the determination of moment-rotation relationships for semi-rigid precast concrete connections in full scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and weld arrangements conformed with successful commercial practice. Proprietary hollow core slabs were tied to the beams by tensile reinforcing bars, which also provide the in-plane continuity across the connections. The strength of the connections in the double sided tests was at least 0.84 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.7 to 3.9 times the flexural stiffness of the attached beam. When the connections were tested without the floor slabs and tie steel, the reduced strength and stiffness were approximately a third and half respectively. This remarkable contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. In general, the double sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided welded plate connection test results are presented in this paper. The behaviour of single sided welded plate connection test results is the subject of another paper.

Sound Insulation Performance of the Layered Structure of the Next Generation High Speed Train (차세대 고속철도 차량 적층 구조의 차음성능)

  • Lee, Jung-Hyeok;Kim, Seock-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.326-331
    • /
    • 2011
  • Aluminum extruded panel used in a high speed train shows high stiffness, however, its sound insulation performance is remarkably decreased by local resonance phenomena. In this paper, improvement strategy of the sound insulation performance is proposed for the floor extruded panel used in HEMU-400x, 400km/h class next generation high speed train under development, and the improvement effect is verified by experiment. Aluminum extruded panel specimen for the floor is manufactured and urethane foam is installed in the core of the panel. Based on ASTM E2249-02, intensity transmission loss is measured and the improvement effect in local resonance frequency band is verified. Finally, improvement effect of the sound insulation performance is estimated on the layered floor structure including the foamed aluminum panel.

  • PDF

Reduction Method for Floor Impact Noise on APT Remodeling (공동주택 리모델링 현장의 바닥충격음 저감대책)

  • Park, Cheol-Yong;Hong, Goo-Pyo;Lee, Jong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.524-525
    • /
    • 2009
  • Heavy-weight impact noise(HN) is the most irritating noise in Korean apartment houses. It has been proclaimed standard floor system of 210mm thick slab with isolation material in the wall type structure. But this regulation is applied only new construction field and is not considered remodeling field. In general, the LN can be reduced by using isolation material but HN is known as relating with stiffness, strength & boundary condition of slab. Therefore it is difficulty in improving the HN on remodeling field. In this study, We conducted the reinforcement of concrete slab using C.F.S.(carbon fiber sheet), steel plate and steel beam after on-dol with isolation material on the remodeling field. As the test results, It appeared using C.F.S was no improved but using steel plate & steel beam were a little improved on HN.

  • PDF

Seismic-resistant slim-floor beam-to-column joints: experimental and numerical investigations

  • Don, Rafaela;Ciutina, Adrian;Vulcu, Cristian;Stratan, Aurel
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.307-321
    • /
    • 2020
  • The slim-floor solution provides an efficient alternative to the classic slab-over-beam configuration due to architectural and structural benefits. Two deficiencies can be identified in the current state-of-art: (i) the technique is limited to nonseismic applications and (ii) the lack of information on moment-resisting slim-floor beam-to-column joints. In the seismic design of framed structures, continuous beam-to-column joints are required for plastic hinges to form at the ends of the beams. The present paper proposes a slim-floor technical solution capable of expanding the current application of slim-floor joints to seismic-resistant composite construction. The proposed solution relies on a moment-resisting connection with a thick end-plate and large-diameter bolts, which are used to fulfill the required strength and stiffness characteristics of continuous connections, while maintaining a reduced height of the configuration. Considering the proposed novel solution and the variety of parameters that could affect the behavior of the joint, experimental and numerical validations are compulsory. Consequently, the current paper presents the experimental and numerical investigation of two slim-floor beam-to-column joint assemblies. The results are discussed in terms of moment-rotation curves, available rotational capacity and failure modes. The study focuses on developing reliable slim-floor beam joints that are applicable to steel building frame structures located in seismic regions.