• Title/Summary/Keyword: floor stiffness

Search Result 229, Processing Time 0.026 seconds

Construction of Super-block Unit Curtain Wall for High-rise Buildings Utilizing a Specialized Installing Equipment (전용 양중틀을 활용한 초고층 건물의 슈퍼블럭 유닛 커튼월 시공)

  • Chung, Sam-Yong;Lee, Sang-Heon;Ohk, Young-Mu
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.174-181
    • /
    • 2004
  • We will introduce a method of construction of super-block curtain wall applied to Tower Palace III which is the highest high-rise complex building in Korea. Up-up method is utilized on Tower Palace III to shorten the term of works and it is that the curtain walls for the belt wall part are installed after the rests. The belt wall structure increases the horizontal structural stiffness of the building. The method of construction of super-block curtain wall is developed and used to raise and install the curtain wails of the belt wall floor. It is that the large block of curtain walls corresponding to three stories is fabricated on the ground in advance and the block is installed at a time by a tower crane. Specialized installing equipment :,s newly developed and applied to install the super-block. curtain wail. The curtain wall of the upper floor of the belt wall part is installed after the super-block. The installing equipment for this floor is developed utilizing a mini excavator and vacuum suctions. The application of this method had made it possible to omit the setting up the scaffold and financial profits such as the shortening of the terms of works was realized. The safety of works was secured and the productivity was also improved.

  • PDF

Seismic Rehabilitation of Nonductile Reidorced Concrete Gravity Frame (비연성 철근 콘크리트 중력 프레임에 의한 지진 보강)

  • Dong Choon Choi;Javeed A. Munsh;Kwang W. Kim
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.116-123
    • /
    • 2001
  • This paper represents results of an effort to seismically rehabilitate a 12-story nonductile reinforced concrete frame building. The frame located in the most severe seismic area, zone 4, is assumed to be designed and detailed for gravity load requirements only. Both pushover and nonlinear time-history analyses are carried out to determine strength, deformation capacity and the vulnerability of the building. The analysis indicates a drift concentration at the $1^{st}$ floor level due to inadequate strength and ductility capacity of the ground floor columns. The capacity curve of the structure, when superimposed on the average demand response spectrum for the ensemble of scaled earthquakes indicates that the structure is extremely weak and requires a major retrofit. The retrofit of the building is attempted using viscoelastic (VE) dampers. The dampers at each floor level are sized in order to reduce the elastic story drift ratios to within 1%. It is found that this requires substantially large dampers that are not practically feasible. With practical size dampers, the analyses of the viscoelastically damped building indicates that the damper sizes provided are not sufficient enough to remove the biased response and drift concentration of the building. The results indicate that VE-dampers alone are not sufficient to rehabilitate such a concrete frame. Concrete buildings, in general, being stiffer require larger dampers. The second rehabilitation strategy uses concrete shearwalls. Shearwalls increased stiffness and strength of the building, which resulted in reducing the drift significantly. The effectiveness of VE-dampers in conjunction with stiff shearwalls was also studied. Considering the economy and effectiveness, it is concluded that shearwalls were the most feasible solution for seismic rehabilitation of such buildings.

  • PDF

Structural Performance of Double Rip Decks Reinforced with Inverted Triangular Truss Girders (역삼각 트러스 거더로 보강된 더블 골 데크 성능 평가)

  • Son, Hong-Jun;Kim, Young-Ho;Chung, Kyung-Soo;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.559-566
    • /
    • 2017
  • This paper proposes a new composite deckplate system reinforced with inverted triangular truss girders(called 'D Deck'), which does not require the use of temporary supports at construction stage. The proposed system retains increased stiffness and strength while keeping the absolute floor height change to a minimum level and can be utilized as floor systems of various types beam members such as the conventional wide-flange and U-shaped composite beams. In order to evaluate the performance of the proposed system, five specimens with a span of 5.5 m were fabricated and tested under field loading conditions consisting of several intermediate steps. The load-deflection curves of each specimen were plotted and compared with the nonlinear three-dimensional finite element analysis results. The comparison showed that the effective load sharing between the truss girders and floor deck occurs and the maximum deflection under construction stage loading is well below the limit estimated by the provisions in Korea Building Code.

Investigation of Optimal Outrigger Location of High-rise Offset Outrigger System (초고층 오프셋 아웃리거 구조시스템의 최적 아웃리거 위치에 대한 탐색)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.16-24
    • /
    • 2017
  • The purpose of this paper is to search the optimal location of offset outrigger system in high-rise building after a structural schematic design of 80 stories building was conducted, making use of MIDAS-Gen. In this research, the key factors of analysis study were column stiffness, outrigger position in plan and outrigger location in height. For the aim of finding out the optimum position of offset outrigger system in tall building, we studied the lateral displacement in top floor which is the very essential variables in the structural design of high-rise building. The results of study showed that the column stiffness, the outrigger location in plan and outrigger location in height had an effect on the optimal position of outrigger system. Also, it is indicated that the research results can be useful in acquiring the structural design materials for seeking the optimum position of offset outrigger system in tall building.

An Efficient Structural Analysis of Multistory Buildings (고층건물의 효율적인 구조해석)

  • Kim, Kyeong Ho;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.141-153
    • /
    • 1987
  • The prediction of the exact behavior of multistory building is one of the most complicated problem encountered in structural engineering practice. An efficient computer method for the three dimensional analysis of building structures is presented in this paper. A multistory building is idealized as an assemblage of a series of rectangular plane frames interconnected by rigid floor diaphragms. The matrix condensation technique is employed for the reduction of degrees of freedom, which results in a significant saving in computational efforts and the required memory size. Kinematical approach was used to assemble condensed stiffness matrices of plane frames into a three dimensional stick model stiffness matrix. The static analysis follows the modified tridiagonal approach. Since this procedure utilizes the condensed stiffness matrix of the structure, the dynamic equations of motion for the story displacement are developed by assigning proper mass for each story. Analysis results of several example structures are compared to those obtained by using the well-known SAP IV for verification of the accuracy and efficiency of the computer program PFS which was developed utilizing the method proposed in this study. The analysis method proposed in this study can be used as an efficient and economical means for the analysis of multistory buildings.

  • PDF

Non-Liner Analysis of Shear Beam Model using Mode Superposition (모드중첩법을 이용한 전단보 모델의 비선형 해석)

  • 김원종;홍성목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.87-96
    • /
    • 1999
  • To analyze the dynamic behavior of structure, direct integration and mode superposition may be utilized in time domain analysis. As finite number of frequencies can give relatively exact solutions, mode superposition is preferable in analyzing structural behavior. In non-linear analysis, however, mode superposition is seldom used since time-varying element stiffness changes stiffness matrix, and the change of stiffness matrix leads to the change of essential constants - natural frequencies and mode shapes. In spite of these difficulties, there are some attempts to adopt mode superposition because of low cost compared to direct integration, but the result is not satisfactory. In this paper, a method using mode superposition in non-linear analysis is presented by separating local element stiffness from global stiffness matrix with the difference between linear and non-linear restoring forces to the external force vectors included. Moreover, the hysteresis model changing with the relative deformation in each floor makes it possible to analyze non-linear behavior of structure. The proposed algorithm is applied to shear beam model and the maximum displacement is compared with the result using direct integration method.

  • PDF

Measurement of Dynamic Properties of Concrete Structures Using Beam Transfer Function Methods (보 전달함수법을 이용한 콘크리트 구조물의 동특성 측정)

  • Kim, Seung-Joon;Yoo, Seung-Yup;Jeong, Yeong;Jun, Jin-Yong;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.950-953
    • /
    • 2006
  • The floor impact noise of concrete structures in apartments buildings is affected from the flexural wave propagation characteristics. Accordingly, the measurement of wave propagation characteristics is required for suggestion of efficient method to reduce the impact noise. The purpose of this article is to propose an experimental technique to measure dynamic properties of concrete structures. The method was proposed using the flexural wave propagation characteristics. Wave speeds, bending stiffness and their loss factors are estimated from which the vibration dissipation capabilities are investigated. Several different concrete beam structures were custom-built for measurement. The damping treatments using viscoelastic materials for reducing noise generation are also tested. The beam transfer function of the damped beam is predicted using the compressional damping model from which the mechanism of the vibration energy dissipation is investigated.

  • PDF

Light weight vehicle design by stick model (스틱모델에 의한 차체 경량화 설계)

  • 김천욱;김지홍
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.97-106
    • /
    • 1990
  • A method of weight evaluation of the load-bearing structural elements of cars is presented and the weight ratio of the analysis model is investigated. Replacing the materials of floor elements of the car into the high-strength steel, a considerable weight-reduction of the model has been obtained. The 1500cc model is selected for the present study and the stick model analysis is employed for the structural analysis. The torsional stiffness of the weight-reduced model is also evaluated and it is shown it has a reasonable rigidity. The ratio of the weight of the load-bearing structural elements to the unladen vehicle weight of cars is about 0.12for the 1500cc model and the weight-reduction of this study can be obtained around 17% of the weight of the load-bearing structural elements.

  • PDF

Moment Magnifier Method for Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads (바닥하중과 압축력을 받는 플랫 플레이트의 장기거동을 고려한 모멘트 증대법)

  • 최경규;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.211-216
    • /
    • 2000
  • Numerical studies were carried out to develop the moment magnifier method for long-term behavior of flat plates, subjected to combined in-plane compressive and transverse loads. Nonlinear finite element analyses were performed for the numerical studies. Through the numerical studies, the long term behavior of the flat plate subjected to uniform or nonuniform floor load was investigated, and creep effects on the degradation of strength and stiffness of the slabs were examined. As the result, the creep factor was developed to epitomizes with creep effect on the flat plate. The moment magnifier method using the creep factor was developed for long-term behavior of flat plates. Also, the design examples are shown for verification of proposed design method.

  • PDF

An Experimental Study for Development of Details and Design Method of CFT Column-to-RC Flat Plate Connections (CFT기둥 철근콘크리트무량판 접합부 상세 및 설계법 개발을 위한 실험연구)

  • Lee, Cheol-Ho;Kim, Jin-Won;Lee, Jin-Hyeok;Park, Cheol-Su;Oh, Jeong-Gun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.203-210
    • /
    • 2005
  • This paper summarizes full-scale test results on CFT column to flat plate connections subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building practice due to its various structural and construction advantages. Constructing the floor as flat plate is often regarded as being essential for both cost savings and rapid construction. However, efficient details for CFT column to flat plate connections have not been proposed yet, and their development is urgently needed. Based on some strategies that include maximizing economical field construction, several connecting schemes were proposed and tested in this study. Test results showed the proposed connection details can exhibit strength and stiffness comparable to or greater than those of R/C flat plate counterpart.

  • PDF