• Title/Summary/Keyword: floor plastering

Search Result 8, Processing Time 0.026 seconds

Development of an Automated Indoor Floor Finish Robot Platform (건축 내부 바닥 미장 자동화 로봇 플랫폼 개발)

  • Ji-Youn Moon;Dong-Ju Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.853-858
    • /
    • 2023
  • Various types of robots are being utilized in the construction industry. Particularly, there is high interest in robots that can be applied to plastering automation, which can ensure consistent work quality. In this paper, we propose a robot platform based on wheels for plastering automation. Through experiments, we measured the surface pressure according to the air pressure of the wheel using the designed robot. As a result, we were able to confirm that the designed robot could perform plastering work on soft mortar with uniformly low pressure per wheel.

An Analysis of the Mechanism of Crack Stop-bar for Floor Plastering of Apartment Buildings (공동주택 바닥미장 균열차단막의 메커니즘 분석)

  • Song, Yong-Sik;Lee, Dong-Hoon;Lee, Sung-Ho;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.333-344
    • /
    • 2011
  • The recent expansion in the number of housing construction projects has been accompanied by substantial improvements in construction quality, which can be attributed to the development of new construction technologies and materials. In apartment complex construction projects, numerous mechanization technologies have been adopted as part of the floor plastering process to counter increasing difficulties in securing labor and the pressing need to reduce lead time, but these have also triggered setbacks such as additional costs or loss of time to fix cracks in or loosening of floor. Cracks developing in the floor of an apartment housing unit, in terms of materials in use, are the products of a complex combination of material makeup, construction workmanship, concrete curing and the protection method. Controlling such elements from the perspective of materials in use may ensure partial success in reducing cracks, but fall short of eliminating them completely. Any attempt to prevent cracks from developing in the first place requires systematic analysis as to their potential causes and viable solutions to reduce them. On this backdrop, this paper aims to provide an analysis of potential causes of cracks found in floor plastering, and consider the mechanism of a crack stop-bar as a fundamental safeguard against them.

Physical Properties of Plastering Mortar with Waste FRP for the Floor (폐 FRP를 혼입한 바닥미장모르타르의 물리적 특성)

  • Kim, Seong Hwan;Lee, Kook Jae;Park, Jong Won;Baek, Joo Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.17-20
    • /
    • 2008
  • This study investigated the fundamental properties and cracking shapes of mortar for the floor after Mock-up test with FRP as wastes of crafts. For the flowability of fresh mortar without FRP, it was favorable compared with fresh mortar using FRP, and the drop time at O-Lot was similar to the flowability. For the compressive strength of fresh mortar with FRP, it was increased about 10% compared with plain. The flexible strength was also increased on fresh mortar with FRP. On the cracking shape, there was many penetrated crack in all directions on plain. In the case that FRP was used, it seemed to have excellent resistance to the crack occurrence because there was no directive crack at a limited part.

  • PDF

The Motion Control of Concrete Floor Finishing Robot (미장로봇의 운동제어)

  • Shin, Dong-Hun;Han, Doo Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.38-45
    • /
    • 1999
  • The 2-trowel type concrete floor finishing robot can move in any direction by adjusting the posture or trowels without any wheels. Since the quality of the smoothed and polished concrete floor is determined by plastering speed, we need to control the velocity of the robot. However, we cannot use the typical motion control method because it is very difficult to measure the velocity of the robot, in contrast to the mobile robots with wheels. To overcome this difficulty, the following are studied in this paper: we found that the robot dynamics has the disturbance depending on its translational speed, and showed that there exists the saturated velocity of the robot which is set by the posture of the trowels, and obtained the relationship between the saturated velocity and the posture in the translation. The result enables us to control the motion of the robot only by adjusting the posture of trowels without measuring the velocity of the robot. Currently, we built the troweling robot and are experimenting its performance with the proposed motion control method.

  • PDF

Workability Characteristics of Cement-Mixed Soil for Architecture (건축용 시멘트 혼합토의 워커빌리티 특성)

  • Lee Sang-Ho;Kim Sang-Chul;Kim Jin-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.15-22
    • /
    • 2006
  • This study was conducted by the slump test and the consistency test of the cement mixed soil which is soil mixed with cement to investigate and estimate the difficulty degree of work and the proper water content. So I would like to present the fundamental data that establish the work standard of the cement mixed soil. In conclusion, in this study the slump value of the cement mixed soil increases over-all according to the increase of the water content although it has a little difference of the increase range and it is smaller than one of the soil. It is estimated that the aggregating and throwing work of the cement mixed soil which is mixed with 6% and 9% cement would be fine when it has the $25%{\sim}27%$ water content and the wall plastering work is the $30%{\sim}32%$ and the floor plastering work is the $30%{\sim}35%$ and the flowing and pouring work is the $40%{\sim}42%$ water content as well as the mold compacting work is the 20%.

Workability Characteristics of Fiber Mixed Soil (섬유 보강 혼합토의 워커빌리티 특성)

  • Song, Gyoo Bog;Lee, Sang Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.53-59
    • /
    • 2016
  • This study was conducted by the slump test and the consistency test of the fiber mixed soil which is soil reinforced with fiber as a reinforced material to investigate and estimate the difficulty degree of work and the proper water content. So I would like to present the fundamental data that establishes the work standard of the fiber mixed soil. In conclusion, in this study the slump value of the fiber mixed soil increases over-all according to the increase of the water content although it has a little difference of the increase range and it is smaller than one of the soil. It is estimated that the aggregating and throwing work of the fiber mixed soil would be fine when it has the about 25 % water content and the wall and floor plastering work is the about 30 % ~ 35 % and the flowing and pouring work is the about 40 % water content as well as the mold compacting work is the about 20 %. There is no decreasing of the workability when the soil is reinforced by the fiber because the workability characteristics of the fiber mixed soil is similar to the one of the soil. Therefore, It is estimated that using the fiber as a reinforced material of soil would be appropriate for the construction.

Standard Process and Work Breakdown Structure for Housing Construction Projects using Infill Modular System (인필식 모듈러 공법을 적용한 주택건설공사의 작업분류체계 구축 및 표준 프로세스 제안)

  • Sohn, Jeong Rak;Lee, Dong Gun;Bang, Jong Dae;Kim, Jin Won
    • Land and Housing Review
    • /
    • v.10 no.3
    • /
    • pp.77-87
    • /
    • 2019
  • In Korea, the modular construction method was applied to the construction of facilities such as military barracks and school dormitories, beginning with the pilot project of Seoul New Elementary School in 2003. In 2017, public modular houses were supplied to Busan(Yongho-dong) and Seoul(Gayang-dong), and modular housing is expected to continue to be supplied in the future. However, there is no clear construction standard for the modular housing construction yet, and there are few cases where the infill modular system is applied. Therefore, this study established the work breakdown structure and proposed a standard process focusing on the infill modular system applied to the construction of Dujeong-dong modular house in Cheonan. Level 1 of the work breakdown structure by construction stage of Infill modular was defined as modular manufacturing, assembly, and finishing process. Level 2 was defined as preparation, modular production, modular infill, modular fixing, floor plastering, building finishing, and other site finishing. Level 3 is defined as 57 detailed unit work of infill modular construction. The standard process of infill modular is proposed for the assembly stage that is commonly applicable to infill modular housing construction. The results of this study can be used for the process plan, transportation plan, lifting plan of modular housing construction.

Process Planning for Finishing Works of High-rise Residential Buildings Project (고층 공동주택 마감공사의 공정계획 프로세스)

  • Baek, Tae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.110-117
    • /
    • 2017
  • In the construction of high-rise residential buildings in which the finishing works are done repetitively in each housing unit, the construction period and cost can be reduced, while maintaining the quality, if the work process is properly managed in order for the resources to be input continuously. Time management methods such as the Bar Chart, CPM and LOB are not appropriate, due to the difficulties involved in the diagraming of repetitive works and applying them to the project. The Tact method also has difficulties in maintaining a constant work flow and needs significant effort and cooperation from the subcontractors to allocate the resources consistently. Partitioning, base works for finishing, floor mortar plastering and the final finishing work are done sequentially in residential buildings projects, and there are many repetitive activities which differ in terms of the work method, work area and productivity. If these repetitive activities are synchronized or converged toward the last work area, the goal of process management can be achieved effectively. Therefore, a process planning method for the finishing works of residential building projects is proposed, which takes into consideration elements, such as the sequential relation between the activities in each housing unit and classification of repetitive works in terms of their management method, work area and production rate, for the continuous input of resources into the housing units.