• Title/Summary/Keyword: flood routing

Search Result 197, Processing Time 0.023 seconds

Flood Analysis by Unsteady Flow on Tidal River Estuary (부정류에 의한 감조하천의 홍수분석)

  • 김현영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.4
    • /
    • pp.81-88
    • /
    • 1990
  • The flow in a river reach where is influenced by tidal motion is characterized by unsteady flow. The flood analysis in the river reach needs depending upon the theory based on the complete unsteady flow equations. In this study the unsteady flow model which is called CRIUM (Channel Routing by Implicit Unsteady Flow Model) was developed and was applied to the Mankyong and Dongjin river in order to analyze the flood characteristics. The results, which were calibrated and verified by the flood records to be measured in the two rivers, show that unsteady flow mode] can be used for the derivation of the flood hydrograph. The peak flood discharges were estimated as 4,960 and $2,870m^3$/sec in 100 year frequency at the estuary of the Mankyong and Dongjin river, respectively. In addition, it was analyzed that the river reaches were not influenced by tidal motion when the discharge magnitude was larger than approximately $3,000m^3$/sec.

  • PDF

Study of Operation Rules for Flood Control to Seomjin River Dam Using HEC-ResSim (HEC-ResSim을 이용한 섬진강댐의 홍수조절 운영룰에 관한 연구)

  • Ahn, Jung Min;Lyu, Siwan;Kim, Joo Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2B
    • /
    • pp.93-101
    • /
    • 2012
  • HEC-ResSim, reservoir operation model, is applied to Seomjin river dam in order to establish a rational method for water supply and flood control by dam operation. In order to minimize downstream flood damage for Seomjin river basin and adjacent regions, reservoir routing is applied to several frequency flood events within the framework of rainy seasonal operation rule and then the characteristics change of hydrological behavior for the downstream of study area is investigated in depth. Its quantitative efficiency and estimation method is evaluated on the basis of the adjustment scheme of conservation water surface elevation for flood control and water secure; reservoir routing considering preliminary release and variable restricted water level; and its effect to water supply; and downstream flood-duration analysis.

Discharge Equation Related to a Levee-Break for a Flood Hazard Map (홍수위험지도 작성을 위한 하천 제방 붕괴 유량공식 제안)

  • Lee, Khil-Ha;Kim, Sung-Wook;Choi, Bong-Hyuck
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.623-627
    • /
    • 2015
  • To compile a flood hazard map it is essential to identify the potential risk areas. A scenario-based numerical modeling approach is commonly used to build a flood hazard map in the case of a levee-break. The model parameters that capture peak discharge, including breach formation and progress, are important in the modeling method. In this study an earth-levee-break model is constructed under the assumption that the failure mechanism and hydraulic processes are identical for all levee-break river activities. Estimation of the hydrograph at the outlet as a function of time is highlighted. The constructed hydrograph can then serve as an upper boundary condition in running the flood routing model downstream, although flood routing is not considered in this study.

THERA: Two-level Hierarchical Hybrid Road-Aware Routing for Vehicular Networks

  • Abbas, Muhammad Tahir;SONG, Wang-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3369-3385
    • /
    • 2019
  • There are various research challenges in vehicular ad hoc networks (VANETs) that need to be focused until an extensive deployment of it becomes conceivable. Design and development of a scalable routing algorithm for VANETs is one of the critical issue due to frequent path disruptions caused by the vehicle's mobility. This study aims to provide a novel road-aware routing protocol for vehicular networks named as Two-level hierarchical Hybrid Road-Aware (THERA) routing for vehicular ad hoc networks. The proposed protocol is designed explicitly for inter-vehicle communication. In THERA, roads are distributed into non-overlapping road segments to reduce the routing overhead. Unlike other protocols, discovery process does not flood the network with packet broadcasts. Instead, THERA uses the concept of Gateway Vehicles (GV) for the discovery process. In addition, a route between source and destination is flexible to changing topology, as THERA only requires road segment ID and destination ID for the communication. Furthermore, Road-Aware routing reduces the traffic congestion, bypasses the single point of failure, and facilitates the network management. Finally yet importantly, this paper also proposes a probabilistical model to estimate a path duration for each road segment using the highway mobility model. The flexibility of the proposed protocol is evaluated by performing extensive simulations in NS3. We have used SUMO simulator to generate real time vehicular traffic on the roads of Gangnam, South Korea. Comparative analysis of the results confirm that routing overhead for maintaining the network topology is smaller than few previously proposed routing algorithms.

A Basic Study on the River Basin Routing Using Numerical Analysis (수치해석을 이용한 자연하천의 하도추적에 관한 기초적연구)

  • Kim, Sung Woon;Koh, Byung Ryoun;Koh, Chang Jong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.127-139
    • /
    • 1998
  • The objectives of this study is at the development of the channel routing model which can be used for flood prediction. Among the routing models, the hydraulic technique of the implicit scheme in the dynamic equation is selected to route the unsteady varied flow in the open channel. The channel routing model is catchment runoff which computed by the conceptual and transfer function model. The conceptual and transfer function model can simulate the catchment runoff accurately. As a result of investigating the channel routing model, the optimal weighting factor ${\theta}$ which fixes two points between time line is chosen, and also, the optimal error tolerance which satisfies computing time and converge of solution is determined in this study.

  • PDF

Development of Flood Analysis Module for the Implementation of a Web-Based Flood Management System (웹기반 홍수관리시스템 구현을 위한 홍수분석모듈개발)

  • Jung, In Kyun;Park, Jong Yoon;Kim, Seong Joon;Jang, Cheol Hee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.103-111
    • /
    • 2014
  • This study was to develop the flood analysis module (FAM) for implementation of a web-based real-time agricultural flood management system. The FAM was developed to apply for an individual watershed, including agricultural reservoir. This module calculates the flood inflow hydrograph to the reservoir using effective rainfall by NRCS-CN method and unit hydrograph calculated by Clark, SCS, and Nakayasu synthetic unit hydrograph methods, and then perform the reservoir routing by modified Puls method. It was programmed to consider the automatic reservoir operation method (AutoROM) based on flood control water level of reservoir. For a $15.7km^2$ Gyeryong watershed including $472{\times}10^4m^3$ agricultural reservoir, rainfall loss, rainfall excess, peak inflow, total inflow, maximum discharge, and maximum water level for each duration time were compared between the FAM and HEC-HMS (applied SCS and Clark unit hydrograph methods). The FAM results showed entirely consistent for all components with simulated results by HEC-HMS. It means that the applied methods to the FAM were implemented properly.