• Title/Summary/Keyword: flood elevation

Search Result 190, Processing Time 0.025 seconds

Investigation of Flow Characteristics of Sharply Curved Channels by Using CCHE2D Model (CCHE2D모형을 이용한 급만곡부의 흐름특성 분석)

  • Kim, Yeon-Su;Jang, Chang-Lae;Lee, Gi-Ha;Jung, Kwan-Sue
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.125-133
    • /
    • 2010
  • In general, curved bends raises a risk of overtopping due to floods and also threatens a bank safety due to a local flow concentration. This study aims to test the applicability of CCHE2D model for experimental flumes with two different types of bends and then investigate flow characteristics in the sharply-curved bend of a natural channel. The results demonstrated that the percent error of water level was within 4.9% for experimental flume applications and the simulated spatial distribution of velocity matched the observed results very closely. The calibrated model based on the experimental flumes was also applied to analyze the flow characteristics in natural channel bends of the Daeyu reach, located in a downstream of the Youngdam Dam. The results showed that in upstream, the simulated water level by the CCHED was observed at 1.5 m higher than the 1-D numerical model (HEC-RAS) result since the HEC-RAS could not represent the bend geometry effect on streamflow. However, the calculated results by several empirical formula support that the CCHE2D is suitable for the super elevation simulation as well as flood stage and velocity in a natural channel bend.

Estimation of Reservoir Sediment Deposition Using Two Dimensional Model (2차원 모형을 이용한 저수지 퇴사량 예측)

  • Lee, Wonho;Kim, Jingeuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.21-27
    • /
    • 2008
  • The Sediment deposits in rivers and reservoirs are major components interfering with the useful function of the reservoirs, and clogging the inlet port at water intakes in rivers and erosion of pump impellers. Therefore, an accurate estimation method of sediment deposition is requisite to the efficient water resources investigation, planning and management. The objective of this paper is to forecast of reservoir sediment deposition using two dimensional model (SMS) to UnMun reservoir in GyeongSangBukDo. The RUSLE model showed that reservoirs volume was decreased $2,084.09{\times}10^6m^3$ after 50 years and $2,196.65{\times}10^6m^3$ after 100 years, which is plan flood level elevation (EL.152.12 m) reservoir. The two dimensional model showed that reservoirs volume was decreased $2,227.41{\times}10^6m^3$ after 50 years and $2,121.47{\times}10^6m^3$ after 100 years, which is plan flood level elevation (EL.152.12 m) reservoir. The results of this application showed that the use of two dimensional model was very effective for the estimation sediment deposits throughout the reservoir.

  • PDF

Inundation Analysis on the Region of Lower Elevation of a New Port by Using SWMM5 and UNET Model - Yongwon-dong, Jinhae-si (SWMM5와 UNET 모형을 이용한 신항만 저지대 침수분석 - 진해시 용원동)

  • Lee, Jung-Min;Lee, Sang-Ho;Kang, Tae-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.442-451
    • /
    • 2008
  • We analyzed characteristics of rainfall-runoff for the channel of Yongwon area made by a new port construction. And we conducted inundation analysis on the region of lower elevation near the coast. SWMM5 was calibrated with the storm produced by the typhoon Megi from August 19 to August 20 in 2004, and was verified with the storm from August 22 to August 22 in 2004. We performed hydraulic channel routing of Yongwon channel about typhoon Megi from August 19 to August 20 in 2004 by UNET model which is a hydraulic channel routing. The simulated runoff hydrographs were added to the new stream as lateral inflow hydrographs and a watershed runoff hydrograph was the upstream boundary condition. The downstream boundary condition data were estimated by the measured stage hydrographs. The maximum stage that was calculated by hydraulic channel routing was higher than the levee of inundated region in typhoon Megi. Thus we can suppose an inundation to have been occurred. We performed inundation analysis about typhoon Megi from August 19 to August 20 in 2004 and flood discharge of return period 10~150 years. And we estimated each inundation area. The inundation areas by return periods of storms were estimated by 3.4~5.7 ha. The causes of inundation are low heights of levee crests (D.L. 2.033~2.583 m), storm surges induced by typhoons and reverse flow through the coastal sewers (D.L. -0.217~0.783 m). A result of this study can apply to establish countermeasure of a flood disaster in Yongwon.

Assessment of Flood Vulnerability: Baramarae Intertidal Area in Anmyeondo, Korea (침수 취약성 평가: 안면도 바람아래 조간대 지역을 사례로)

  • KIM, Jang-soo;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.2
    • /
    • pp.29-39
    • /
    • 2010
  • Climate change recently causes rapid rises in sea level in Baramarae intertidal area and the rises present several socio-economic impacts to the affected area. We have assessed the vulnerability of the region by the rise of the sea level. Using quantitative GIS method on multi-temporal satellite images, we have first estimated the elevation (Digital Elevation Model: DEM) of Baramarae intertidal area and hence we were possibly able to identify the flooded areas under the IPCC SRES scenarios. As sea level rises by 20cm, 30cm, 40cm, 50cm and 60 cm, the estimated flooded areas of the tidal flat are 68ha, 85ha, 103ha, 121ha and 139ha, respectively. The most affected area is the tidal flat in Gagyeongju Village (Gonam-li, Gonam-myeon, Taean, Chungnam), because it has not only lower altitude but also, perhaps more significantly smooth slope. The potential affected areas are currently populated by farming of oysters and short-necked clams and therefore the areas expect significant economic loss by rise of sea level.

Risk Model for the Safety Evaluation of Dam and Levee: II. Application (댐 및 하천제방에 대한 위험도 해석기법의 개발 : II. 적용 예)

  • Han, Geon-Yeon;Lee, Jong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.691-698
    • /
    • 1997
  • The risk assessment model for dam and levee is applied to a river where two adjacent dams are located in the upstream of the watershed. "A" dam is proven to be safe with 200-year precipitation and unsafe with PMP condition, whereas "B" dam to be safe with 200-year precipitation and PMP condition. The computed risk considering the uncertainties of the runoff coefficient. initial water depth and relevant data of the dam and spillway turn out to be equivalent results in Monte-Carlo and AFOSM method. In levee risk model, this study addresses the uncertainty of water surface elevation by Manning's equation. Monte-Carlo simulation with the variations of Manning's roughness coefficient is calculated by assuming that it follows atriangular distribution. The model can be used for preparing flood risk maps, flood warning systems, and establishing nation's flood disaster protection plan.

  • PDF

A study on the quick graphical method of flood routing (홍수추적 속산도식해법에 대한 소고)

  • 박정근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.1
    • /
    • pp.4079-4086
    • /
    • 1976
  • In many reservoir projects, economic considerations will necessitate a design utilizing surcharge. Determination of the most economical combination of surcharge and spillway capacity for a given spillway crest level will require flood routing studies and economic studies of the dam-reservoir-spillway combinations. Many methods of actual flood routing have been devised, each of them with its advantages and disadvantages. Some of these methods are listed below: (1) Arithmetical trial-and-error method. (2) Modified Puls' method (3) Cheng's graphical method (4) Horton's arithmetical method (5) Ekadahl's arithmetical method (6) Digital computer programming. For the purpose of preliminary design and cost estimating of dams and spillways, it is often required to estimate, for a given design flood and spillway crest level. the approximate values of two among the three characteristics of the spillway spillway length, maximum discharge and surcharge depth at maximum discharge, when one of these quantities is given. As is well known, the outflow hydrograph for an ungated overflow spillway assumes the form of a wave-shaped curve with a minimum point for Q=o At zero time and a maximum point for Q=Qmax at its intersection with the falling leg of the inflow hydrograph (see Fig. 4) The shaded area between the inflow and outflow hydrographs represents at the approximate scale the temporary retention Vt. In line with the remarks, draw by free hand the assumed outflow hydrograph with its maximum point for the given Qmax (see Fig. 4) and by planimetration find Vt. From the reservoir capacity curve (Fig. 3) find Vs for the given spillway crest level and make V=Vs+Vt. From the above curve find surcharge water elevation for V and surcharge depth Hmax over spillway crest. From the discharge formula compute {{{{L= { Q} over { { CH}^{3/2 } } }}}} The methed provides a means for a quick and fairly accurate estimation of spillway capacity.

  • PDF

GIS-Based Design Flood Estimation of Ungauged Watershed (논문 - GIS기반의 미계측 유역 설계홍수량 산정)

  • Hong, Seong-Min;Jung, In-Kyun;Park, Jong-Yoon;Lee, Mi-Seon;Kim, Seong-Joon
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.87-100
    • /
    • 2011
  • This study is to delineate the watershed hydrological parameters such as area, slope, rain gauge weight, NRCS-CN and time of concentration (Tc) by using the Geographic Information Sytem (GIS) technique, and estimation of design flood for an ungauged watershed. Especially, we attempted to determine the Tc of ungauged watershed and develop simple program using the cell-based algorithm to calculates upstream or downstream flow time along a flow path for each cell. For a $19km^2$ watershed of tributary of Nakdong river (Seupmoon), the parameters including flow direction, flow accumulation, watershed boundary, stream network and Tc map were extracted from 30m Agreeburn DEM (Digital Elevation Model) and landcover map. And NRCS-CN was extracted from 30m landcover map and soil map. Design rainfall estimation for two rainfall gauge which are Sunsan and Jangcheon using FARD2006 that developed by National Institute for Disaster Prevention (NIDP). Using the parameters as input data of HEC-l model, the design flood was estimated by applying Clark unit hydrograph method. The results showed that the design flood of 50 year frequency of this study was $8m^3/sec$ less than that of the previous fundamental plan in 1994. The value difference came from the different application of watershed parameter, different rainfall distribution (Huff quartile vs. Mononobe) and critical durations. We could infer that the GIS-based parameter preparation is more reasonable than the previous hand-made extraction of watershed parameters.

  • PDF

Flood Runoff Analysis using a Distributed Rainfall Runoff Model (분포형 유출모형을 이용한 홍수유출해석)

  • Jo, Hong-Je;Jo, In-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.199-208
    • /
    • 1998
  • This study is on the application of TOPMDEL(Topographic based hydrologic model) Which is a distributed rainfall-runoff model to the flood runoff analysis. The test area was Wichun experimental catchment site which is mountainous mid-area (Dongok, 33.63$\textrm{km}^2$ and Goro, 109,725 $\textrm{km}^2$) and being operated by the Ministry of Construction and ransporation. A three-dimensional digital elevation model(DEM) map was constructed using a physiographic map(1/25,000) and GIS software, Arc/Info, was used to the analysis of geofraphic factors. The topographic index of Dongok and Goro subcatchment was similar. As a results of the analysis, the model was validated that the simulated peak flow of a flood runoff was fit to the observed data. For the analysis of the effects of grid size, Dongok subcatchment was divided into 100,120-,240 m grid and Goro subcatchment was divided into grid and 120,200,350 m grid. It was shown that the peak flow increased in proportion to the increases of the grid size, but peak times were constant regardless of the grid size in both of the watershed.

  • PDF

Floods and Flood Warning in New Zealand

  • Doyle, Martin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.20-25
    • /
    • 2012
  • New Zealand suffers from regular floods, these being the most common source of insurance claims for damage from natural hazard events in the country. This paper describes the origin and distribution of the largest floods in New Zealand, and describes the systems used to monitor and predict floods. In New Zealand, broad-scale heavy rainfall (and flooding), is the result of warm moist air flowing out from the tropics into the mid-latitudes. There is no monsoon in New Zealand. The terrain has a substantial influence on the distribution of rainfall, with the largest annual totals occurring near the South Island's Southern Alps, the highest mountains in the country. The orographic effect here is extreme, with 3km of elevation gained over a 20km distance from the coast. Across New Zealand, short duration high intensity rainfall from thunderstorms also causes flooding in urban areas and small catchments. Forecasts of severe weather are provided by the New Zealand MetService, a Government owned company. MetService uses global weather models and a number of limited-area weather models to provide warnings and data streams of predicted rainfall to local Councils. Flood monitoring, prediction and warning are carried out by 16 local Councils. All Councils collect their own rainfall and river flow data, and a variety of prediction methods are utilized. These range from experienced staff making intuitive decisions based on previous effects of heavy rain, to hydrological models linked to outputs from MetService weather prediction models. No operational hydrological models are linked to weather radar in New Zealand. Councils provide warnings to Civil Defence Emergency Management, and also directly to farmers and other occupiers of flood prone areas. Warnings are distributed by email, text message and automated voice systems. A nation-wide hydrological model is also operated by NIWA, a Government-owned research institute. It is linked to a single high resolution weather model which runs on a super computer. The NIWA model does not provide public forecasts. The rivers with the greatest flood flows are shown, and these are ranked in terms of peak specific discharge. It can be seen that of the largest floods occur on the West Coast of the South Island, and the greatest flows per unit area are also found in this location.

  • PDF

Unsteady Flow Analysis in the Youngsan River Using Explicit and Implicit Finite Difference Methods (양해법과 음해법을 이용한 영산강에서의 부정류해석)

  • Choi, Sung-Uk;Yeo, Woon-Kwang;Choo, Cheol;Kim, Chang-Wan;O, Yu-Chang
    • Water for future
    • /
    • v.24 no.4
    • /
    • pp.49-58
    • /
    • 1991
  • Flood routing in the Youngsan River was performed for the flood event of July, 1989 by two finite difference methods. The Saint Venant eq., a kind of hyperbolic partial differential equation is employed as governing equation and the explicit scheme (Leap Frog) and implicit scheme (Preissmann) are used to discretize the GE. As for the external boundary conditions, discharge and tidal elevation are upstream and downstream BC, respectively and estuary dam is included in internal BC. Lateral inflows and upstream discharges are the hourly results from storage function method, At Naju station, a Relatively upstream points in this river, the outputs are interpreted as good ones by comparing two numerical results of FDMs with the observed data and the calibrated results by storage function method. and two computational results are compared at the other sites, from middle stream and downstream points, and thus are considered reliable. Therefore, we can conclude from this research that these numerical models are adaptable in simulating and forecasting the flood in natural channels in Korea as well as existing hydrologic models. And the study about optimal gate control at the flood time is expected as further study using these models.

  • PDF