• Title/Summary/Keyword: flood elevation

Search Result 190, Processing Time 0.03 seconds

A Study on determining Flood Protection Elevation in Urban Area (도시지역 방어침수위 설정에 관한 연구)

  • Shin, Sang-Young;Lee, Yang-Jae
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.649-652
    • /
    • 2008
  • In urban area, flood risk is getting higher because of inland flood risk has grown up by changing rainfall intensity, rainfall pattern, changing land use and so on. Urban area is needed higher flood protection level to protect accumulated people, buildings and other infrastructures. However, even though former flood protection has focused on overflow from river, there is not a guide line for evaluating proper flood protection level. Thus, it is necessary to protect flood from inland flooding as well as overflow from river and need a proper method to evaluating flood protection level. This study present a method of determining flood protection elevation by using GIS tools for deciding proper flood protection level. The study result may contribute to urban flood protection measures in which inland flood risk increases.

  • PDF

Analysis of Flood Inundation Area using HEC-RAS/GIS (HEC-RAS/GIS를 이용한 홍수 범람지역 분석)

  • An, Seung Seop;Lee, Jeung Seok;Kim, Jong Ho
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • The purpose of the study was to construct a forecast system of flood inundation area at natural stream channels. The study built the system to interpret the flood inundation area in four stages ; constructing topography data around the stream channel, interpreting flood discharge, interpreting flood elevation in the stream channel, and interpreting the flood inundation and mapping. According to the result of the analysis, as for the characteristic of flood inundation around the area within the purview of this study, although there were areas where flood inundation over a bank caused a flooded area, the failure of the internal drainage in the ground lower than flood elevation caused more serious problems. Rather than the existing method where only the estimated flood elevation data is used based on the hydrographical stream channel trace model(such as the HEC-RAS model) to establish the flood inundation area, if the procedure introduced in this study was applied to interpret the floodplain, actual flood inundation area could be visibly confirmed.

Development of System for Sizing Flood Detention Storages (홍수 저류지 규모결정 시스템 개발)

  • Noh, Jae-Kyoung;Oh, Jin-Young;Yoo, Jae-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.884-888
    • /
    • 2006
  • A system was developed to size flood detention storages at the planned Dangjin residing district. Components of system is consisted of module for deriving relationship between elevation and storage, module for calculating sediment elevation, module for setting outflow sizes and elevations, module for reservoir flood routing, and module for ascertaining sizes of detention facilities. And a system was constructed with Visual Basic 6.0. Using this system, sizes of flood detentions are able to be determined very easily and rapidly only by pushing command buttons and by viewing results.

  • PDF

The Analysis of Flood Propagation Characteristics using Recursive Call Algorithm (재귀호출 알고리듬 기반의 홍수전파 특성 분석)

  • Lee, Geun Sang;Jang, Young Wun;Choi, Yun Woong
    • Spatial Information Research
    • /
    • v.21 no.5
    • /
    • pp.63-72
    • /
    • 2013
  • This paper analyzed the flood propagation characteristics of each flood elevation due to failure of embankment in Muju Namdae Stream using recursive call algorithm. A flood propagation order by the flood elevation was estimated by setting destruction point at Beonggu and Chasan small dam through recursive call algorithm and then, the number of grids of each flood propagation order and accumulated inundation area were calculated. Based on the flood propagation order and the grid size of DEM, flood propagation time could be predicted each flood elevation. As a result, the study could identify the process of flood propagation through distribution characteristic of the flood propagation order obtained from recursive call algorithm, and could provide basic data for protection from flood disaster by selecting the flood vulnerable area through the gradient pattern of the graph for accumulated inundation area each flood propagation order. In addition, the prediction of the flood propagation time for each flood water level using this algorithm helped provide valuable information to calculate the evacuation path and time during the flood season by predicting the flood propagation time of each flood water level.

Flood prediction in the Namgang Dam basin using a long short-term memory (LSTM) algorithm

  • Lee, Seungsoo;An, Hyunuk;Hur, Youngteck;Kim, Yeonsu;Byun, Jisun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.471-483
    • /
    • 2020
  • Flood prediction is an important issue to prevent damages by flood inundation caused by increasing high-intensity rainfall with climate change. In recent years, machine learning algorithms have been receiving attention in many scientific fields including hydrology, water resources, natural hazards, etc. The performance of a machine learning algorithm was investigated to predict the water elevation of a river in this study. The aim of this study was to develop a new method for securing a large enough lead time for flood defenses by predicting river water elevation using the a long- short-term memory (LSTM) technique. The water elevation data at the Oisong gauging station were selected to evaluate its applicability. The test data were the water elevation data measured by K-water from 15 February 2013 to 26 August 2018, approximately 5 years 6 months, at 1 hour intervals. To investigate the predictability of the data in terms of the data characteristics and the lead time of the prediction data, the data were divided into the same interval data (group-A) and time average data (group-B) set. Next, the predictability was evaluated by constructing a total of 36 cases. Based on the results, group-A had a more stable water elevation prediction skill compared to group-B with a lead time from 1 to 6 h. Thus, the LSTM technique using only measured water elevation data can be used for securing the appropriate lead time for flood defense in a river.

Synthetic storm sewer network for complex drainage system as used for urban flood simulation

  • Dasallas, Lea;An, Hyunuk;Lee, Seungsoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.142-142
    • /
    • 2021
  • An arbitrary representation of an urban drainage sewer system was devised using a geographic information system (GIS) tool in order to calculate the surface and subsurface flow interaction for simulating urban flood. The proposed methodology is a mean to supplement the unavailability of systematized drainage system using high-resolution digital elevation(DEM) data in under-developed countries. A modified DEM was also developed to represent the flood propagation through buildings and road system from digital surface models (DSM) and barely visible streams in digital terrain models (DTM). The manhole, sewer pipe and storm drain parameters are obtained through field validation and followed the guidelines from the Plumbing law of the Philippines. The flow discharge from surface to the devised sewer pipes through the storm drains are calculated. The resulting flood simulation using the modified DEM was validated using the observed flood inundation during a rainfall event. The proposed methodology for constructing a hypothetical drainage system allows parameter adjustments such as size, elevation, location, slope, etc. which permits the flood depth prediction for variable factors the Plumbing law. The research can therefore be employed to simulate urban flood forecasts that can be utilized from traffic advisories to early warning procedures during extreme rainfall events.

  • PDF

Comparing Methods for Determining Flood Protection Elevation in Urban Built-up Areas (도시지역 방어침수위 설정방법 비교분석)

  • Lee, Yang Jae;Shin, Sang Young;Lee, Chang Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.271-281
    • /
    • 2008
  • To determine the flood protection elevation (FPE) in urban built-up areas, this study examines four possible methods: using the highest flood elevation in the past, extending base flood elevations of nearby watercourse to inland, and two simulation methods of inland flood under the same rainfall used in the watercourse planning nearby. According to the case study of the Jang-An Drainage Area, Seoul, the highest flood elevation in the past and simulation results of inland flood under the same rainfall in the watercourse planning nearby tend to get similar results, while extending base flood elevations of nearby watercourse to inland shows much higher elevations than other results. Meanwhile, cost-benefit analysis, when regulating residential/commercial uses below the FPE by each of four methods, suggest that planners need to consider carefully the economic feasibility of FPE used to choose appropriate methods.

On method calculation design flood elevation of esturial city

  • Wang Chao;Chao, Wang-Dong
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.42-44
    • /
    • 1996
  • Recently due to repeatedly occurrence of flood, a lot of Chinese cities accept new design criteria for their protective project Most of them calculated by a certain type of probability distribution. In order to meet the demand of development economy the return period of design criteria is changed more longer and longer even 1000years, but the data which the calculation dependent on is only about 30-40 years. (omitted)

  • PDF

Analyzing the Flood Inundation in Low Agricultural Area (저지대 농경지의 홍수범람 분석)

  • Jun, Kye-Won;Lee, Ho-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.17-24
    • /
    • 2007
  • This study analyzes the flood inundation in low agricultural area caused by rainfall during typhoon periods and how flood inundation areas should be affected. GIS techniques, HEC-HMS and HEC-GeoHMS were used for flood runoff, HEC-RAS was applied in water surface elevation analysis at each cross-section. RMA2, SED2D were applied for runoff characteristics of inundation areas and river bed change and distribution of sediment. As a result, velocity distribution was analyzed 2.6 m/s-3.4 m/s in flood inundation by water level increase. In the case of bed elevation change, most sediments were deposited to the parts that adjoin bank.

Application of adaptive mesh refinement technique on digital surface model-based urban flood simulation

  • Dasallas, Lea;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.122-122
    • /
    • 2020
  • Urban flood simulation plays a vital role in national flood early warning, prevention and mitigation. In recent studies on 2-dimensional flood modeling, the integrated run-off inundation model is gaining grounds due to its ability to perform in greater computational efficiency. The adaptive quadtree shallow water numerical technique used in this model implements the adaptive mesh refinement (AMR) in this simulation, a procedure in which the grid resolution is refined automatically following the flood flow. The method discounts the necessity to create a whole domain mesh over a complex catchment area, which is one of the most time-consuming steps in flood simulation. This research applies the dynamic grid refinement method in simulating the recent extreme flood events in Metro Manila, Philippines. The rainfall events utilized were during Typhoon Ketsana 2009, and Southwest monsoon surges in 2012 and 2013. In order to much more visualize the urban flooding that incorporates the flow within buildings and high-elevation areas, Digital Surface Model (DSM) resolution of 5m was used in representing the ground elevation. Results were calibrated through the flood point validation data and compared to the present flood hazard maps used for policy making by the national government agency. The accuracy and efficiency of the method provides a strong front in making it commendable to use for early warning and flood inundation analysis for future similar flood events.

  • PDF