• Title/Summary/Keyword: flocculation rate

Search Result 75, Processing Time 0.02 seconds

A SINGLE FLOCCULANT/DUAL FLOCCULATION SYSTEM FOR DEWATERING USING A BRANCHED SELF INVERSING EMULSION FLOCCULANT

  • Bae, Young-Han;Lee, Sung-Sik
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.208-216
    • /
    • 2006
  • In order to create a single flocculant/dual flocculation system, polyacrylamide-co-trimethyl ammonium ethyl acrylate chloride (TAEAC) polymers with varying molecular weights and structures were prepared for use of flocculants. The higher the cationic density of the polymer is higher, the higher was the conversion rate and the ratio of monomer. An acrylamide as nonionic monomer was less reactive than a TAEAC as cationic monomer. The branched polymer which was polymerized with a cross-linking agent, N, N-methylene bis-acrylamide had a higher stability and higher viscosity than a linear polymer but its dewatering efficiency was poor in a single flocculation system. In the case of single flocculant/dual flocculation, the branched polymer has better flocculation efficiency and the water content of the dewatered cakes was lower than the others, as the result of a re-flocculation effect. The optimum conditions for dual flocculation are a sequence in which the $1^{st}$ and $2^{nd}$ dosage are 75% and 25%/total dosage of a single flocculation system. The dewatering efficiency of a dual flocculation system is improved considerably from 10 to 25% under the experimental conditions used herein.

Flocculation Characteristics of Kaoline Suspensions in Water by Cationic Polyelectrolytes

  • Kam, Sang-Kyu;Kim, Dae-kyoung;Ko, Byung-Churl;Moon, Chang-Seong;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.11 no.2
    • /
    • pp.93-102
    • /
    • 2002
  • Using a simple continuous optical technique, coupled with measurements of zeta potential, the flocculation characteristics of kaoline suspensions of different content(15, 35 and 55 NTU) by several cationic polyelectrolytes, has been examined. The optimum mixing is obtained under a constant stirring of 200 rpm, differently from a general flocculation test. The charge density of a polyelectrolyte is important in determining the optimum dosage and in the removal of kaoline particles. The optimum dosage is less for the polyelectrolyte of higher charge density and is the same regardless of kaoline content. At the dosage, the removal of kaoline particles is higher for the polyelectrolyte of higher charge density and zeta potential of kaoline particles reaches to near zero. The rate of adsorption and flocculation rate have been found to be affected by charge density and molecular weight of a polyelelctrolyte and the content of kaoline particles.

Extraction and Characterization of Aloe Glucomannan: Assessing Its Flocculation Capability

  • Hye Mi Kwon;Shin Young Lee;Won Hur
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.626-632
    • /
    • 2023
  • Acemannan, a highly acetylated glucomannan, was extracted from fresh Aloe vera leaves by ethanol fractionation, resulting in a concentration increase of more than threefold. The presence of acemannan was confirmed using FTIR and 1H NMR analysis, revealing an average molecular weight of 780 kDa. The flocculating activity of the fractionated aloe gel polysaccharide was assessed through settling tests in a 1% (w/v) bentonite suspension. The results demonstrated that the aloe polysaccharide exhibited remarkable stability within a temperature range of 20~70 ℃. The maximal flocculation rate at different pH levels ranged from 93% to 97%, with an optimal dose for maximum flocculation rate between 0.25 mg/mL. Notably, the minimum dose required for flocculation was achieved at a pH of 3, attributed to the compression of electrostatic repulsion on the surface of bentonite particles. However, the flocs obtained under acidic conditions were less dense and compact, exhibiting lower sedimentation velocity compared to those formed under neutral and alkaline pH conditions. Additionally, the addition of salt showed a slight synergistic effect on flocculation, significantly enhancing the sedimentation velocity. This investigation highlights the potential of Aloe vera polysaccharide as a natural and edible flocculant, offering promising applications in various industries.

Flocculation Effect of Alkaline Electrolyzed Water (AEW) on Harvesting of Marine Microalga Tetraselmis sp.

  • Lee, Su-Jin;Choi, Woo-Seok;Park, Gun-Hoo;Kim, Tae-Ho;Oh, Chulhong;Heo, Soo-Jin;Kang, Do-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.432-438
    • /
    • 2018
  • Microalgae hold promise as a renewable energy source for the production of biofuel, as they can convert light energy into chemical energy through photosynthesis. However, cost-efficient harvest of microalgae remains a major challenge to commercial-scale algal biofuel production. We first investigated the potential of electrolytic water as a flocculant for harvesting Tetraselmis sp. Alkaline electrolyzed water (AEW) is produced at the cathode through water electrolysis. It contains mineral ions such as $Na^+$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ that can act as flocculants. The flocculation activity with AEW was evaluated via culture density, AEW concentration, medium pH, settling time, and ionic strength analyses. The flocculation efficiency was 88.7% at 20% AEW (pH 8, 10 min) with a biomass concentration of 2 g/l. The initial biomass concentration and medium pH had significant influences on the flocculation activity of AEW. A viability test of flocculated microalgal cells was conducted using Evans blue stain, and the cells appeared intact. Furthermore, the growth rate of Tetraselmis sp. in recycled flocculation medium was similar to the growth rate in fresh F/2 medium. Our results suggested that AEW flocculation could be a very useful and affordable methodology for fresh biomass harvesting with environmentally friendly easy operation in part of the algal biofuel production process.

Effects of the Water Quality on the Dispersion Properties of Bentonites Used for Drilling Fluid (시추이수용 벤토나이트의 분산 특성에 미치는 수질의 영향)

  • Akther, Shamima;Hwang, Jin-Yeon;Lee, Hyo-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.21-33
    • /
    • 2007
  • The dispersion/flocculation behavior of bentonite is a major concern in performance of drilling fluid. We studied the dispersion/flocculation characteristics of three commercial bentonites [two CMC (carboxymethyl cellulose) treated and one untreated] in waters of different pHs and salt concentrations. We also examined changes in the viscosity of bentonite suspensions in such waters as a major rheological property of drilling fluid. The dispersion/flocculation behaviors of bentonites were measured by two methods: colorimetric and light scattering method. Light scattering method allows estimating the floc diameter and flocculation rate. The dispersion and flocculation behaviors were diverse with the different bentonites and water qualities. In distilled water, all the bentonites were well dispersed up to first 10 minutes. After that, the CMC-bearing bentonites were flocculated. In salt waters, all the samples were flocculated and the flocculation rate is varied with salt concentration and polymer content. The volume of settled flocs decreased with increasing salt concentration. The flocculation rate and floc diameter increased with decreasing pH of solutions, whereas the volume of settled flocs increased with increasing pH of solutions. The bentonites of fast flocculation behavior had low viscosity. The results of the present study will be helpful in applying bentonites to drilling fluids in diverse environments.

Flocculation Kinetics Using Fe(III) Coagulant in Advanced Water Treatment: The Effect of Sulfate Ion (상수처리시 Fe(III) 응집제를 이용한 응집동력학에 관한 연구 : 황산이온의 영향)

  • 강임석;이병헌
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.367-377
    • /
    • 1995
  • The study of flocculation kinetics is of fundamental interest in the field of water treatment, because rational study of the factors affecting the coagulation process should be based on the rate of particle growth. The effect of sulfate on flocculation kinetics were examined using ferric nitrate as a coagulant to coagulate kaolin clay in water under several experimental conditions. Both the particle size distribution data obtained from the AIA and the on-line measurement of turbidity fluctuation by the PDA were used to measure flocculation kinetics. Results show that sulfate ion added to the kaolin suspension played an important role in the flocculation process, not only improving flocculation kinetics at more acidic pH levels but also changing surface charge of particles. The kinetics of flocculation were improved mainly by the enhanced rate and extent of Fe(III) precipitation attributed to the addition of sulfate, and thereby, better interparticle collision frequency, but little by the charge reductions resulting from the sulfate addition. The increase in sulfate concentration beyond $3\times10^{-4}M (up to 2\times10^{-3}M)$ did not induce further improvement in flocculation kinetics, although the higher concentrations of sulfate ion substantially increased the negative ZP value of particles. Key Words : Flocculation Kinetics, Fe(III) Coagulant, Sulfate ion, Turbidity Fluctuation.

  • PDF

Optimal Conditions for Propagation in Bottom and Top Brewing Yeast Strains

  • Cheong, Chul;Wackerbauer, Karl;Lee, Si-Kyung;Kang, Soon-Ah
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.739-744
    • /
    • 2008
  • The method of yeast propagation has an influence on yeast physiology, fermentation ability, flocculation rate, and taste stability of beer. In order to find optimal conditions for propagation, several parameters were investigated in combinations. The bottom brewing yeast grown at $10^{\circ}C$ indicated that a higher flocculation capacity during the $1^{st}$ fermentation. However, the taste stability and the aroma profile were not affected by parameters of propagation investigated. The beer quality was rather affected by storage duration. In addition, a correlation between tasting and chemiluminescence was found at the beer, which was produced using bottom brewing yeast. The propagation at $10-25^{\circ}C$ with addition of zinc ion indicated the best condition to improve fermentation ability, flocculation rate, and filterability for bottom brewing yeast, whereas the propagation at $30^{\circ}C$ with addition of zinc ion showed the best condition to increase fermentation ability for top brewing yeasts.

An Experimental Study on Characteristics of Sedimentation of Dredged Soil (준설토의 침강특성에 관한 실험적연구)

  • Yoo, Nam-Jae;Lee, Jong-Ho;Jun, Sang-Hyun;Lee, Jong-yong
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.113-122
    • /
    • 2000
  • Column tests in the laboratory were preformed to investigate characteristics of settling process of dredged soil sampled from in-situ. Test results were analyzed by using the existing theories on discrete settling and hindered settling. From column tests of monitoring the interface with time, settling was found to be a linear process with time and the settling rate was increased with initial water content of slurry. The settling rate was also observed to decrease with increasing initial height of slurry. Most of settling process were composed of flocculation, hindered settling and self-weight consolidation. On the other hands, flocculation of soil during settling was observed and it was found that the size and density of flocculated particles could be analyzed by using the method proposed by Richardson and Zaki.

  • PDF

Theoretical Approach to Calculating rms-Velocity Gradient in Flocculators (응집지 속도경사(G) 계산에 대한 이론적인 고찰)

  • Kim, Ja-Kyum
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.351-356
    • /
    • 2004
  • Selecting appropriate G values in flocculator operation is important to produce high quality filter effluent in water treatment plants. However, misunderstanding and misleading of G calculation for the case of having power sources more than one or many paddles with one power source in a flocculation basin sometimes have led to low performance in flocculation. Theoretical analysis confirmed that the total G value in one flocculation unit having power sources more than one or with many paddles is the root-square of the sum of square of individual G value. This analysis also can give a simple calculation method of G value for designers and operators in fields.

Prediction of Coagulation/Flocculation Treatment Efficiency of Dissolved Organic Matter (DOM) Using Multiple DOM Characteristics (다중 유기물 특성 지표를 활용한 용존 유기물질 응집/침전 제거효율 예측)

  • Bo Young Kim;Ka-Young Jung;Jin Hur
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.6
    • /
    • pp.465-474
    • /
    • 2023
  • The chemical composition and molecular weight characteristics of dissolved organic matter (DOM) exert a profound influence on the efficiency of organic matter removal in water treatment systems, acting as efficiency predictive indicators. This research evaluated the primary chemical and molecular weight properties of DOM derived from diverse sources, including rivers, lakes, and biomasses, and assessed their relationship with the efficiency of coagulation/flocculation treatments. Dissolved organic carbon (DOC) removal efficiency through coagulation/flocculation exhibited significant correlations with DOM's hydrophobic distribution, the ratio of humic-like to protein-like fluorescence, and the molecular weight associated with humic substances (HS). These findings suggest that the DOC removal rate in coagulation/flocculation processes is enhanced by a higher presence of HS in DOM, an increased influence of externally sourced DOM, and more presence of high molecular weight compounds. The results of this study further posit that the efficacy of water treatment processes can be more accurately predicted when considering multiple DOM characteristics rather than relying on a singular trait. Based on major results from this study, a predictive model for DOC removal efficiency by coagulation/flocculation was formulated as: 24.3 - 7.83 × (fluorescence index) + 0.089 × (hydrophilic distribution) + 0.102 × (HS molecular weight). This proposed model, coupled with supplementary monitoring of influent organic matter, has the potential to enhance the design and predictive accuracy for coagulation/flocculation treatments targeting DOC removal in future applications.